File size: 8,529 Bytes
db95f5a
 
b2b05e9
db95f5a
 
 
 
 
 
 
 
 
 
 
 
b2b05e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db95f5a
 
 
 
 
 
 
 
b2b05e9
 
db95f5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b05e9
 
 
 
db95f5a
b2b05e9
 
db95f5a
 
 
 
 
 
 
b2b05e9
db95f5a
 
 
 
 
 
 
 
 
 
 
 
b2b05e9
 
 
db95f5a
 
b2b05e9
db95f5a
 
 
 
 
 
 
ed78e95
 
 
db95f5a
ed78e95
 
 
 
ca0df93
089a548
 
ca0df93
089a548
 
 
 
 
 
 
 
bf0d3e3
 
b2b05e9
 
 
 
 
 
 
bf0d3e3
b2b05e9
bf0d3e3
 
 
089a548
 
 
db95f5a
089a548
 
db95f5a
089a548
 
db95f5a
089a548
 
 
db95f5a
089a548
 
 
 
 
 
 
b2b05e9
089a548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b05e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import os
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
from unidecode import unidecode
import re

# Define MuRIL model and tokenizer
muril_tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased")
muril_model = AutoModelForMaskedLM.from_pretrained("google/muril-base-cased")

# Function to initialize MuRIL pipeline
def initialize_muril_pipeline(temperature, max_tokens, top_k):
    muril_pipeline = pipeline(
        "text-generation",
        model=muril_model,
        tokenizer=muril_tokenizer,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        max_new_tokens=max_tokens,
        do_sample=True,
        top_k=top_k,
        num_return_sequences=1,
        eos_token_id=muril_tokenizer.eos_token_id
    )
    return muril_pipeline

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, 
        chunk_overlap=chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
    )
    return vectordb

# Initialize langchain LLM chain using MuRIL
def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing MuRIL model...")
    muril_pipeline = initialize_muril_pipeline(temperature, max_tokens, top_k)
    
    # Integrate pipeline with langchain
    llm = HuggingFacePipeline(pipeline=muril_pipeline, model_kwargs={'temperature': temperature})
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain

# Initialize the LLM chain for your chatbot
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    qa_chain = initialize_llmchain(llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"

# Demo function with Gradio UI
def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>BookMyDarshan: Your Personalized Spiritual Assistant</h2></center>
        <h3>Explore Sacred Texts and Enhance Your Spiritual Journey</h3>""")
        
        gr.Markdown(
        """<b>About BookMyDarshan.in:</b> We are a Hyderabad-based startup dedicated to providing pilgrims with exceptional temple darshan experiences. 
        Our platform offers a comprehensive suite of spiritual and religious services, customized to meet your devotional needs.<br><br>
        <b>Note:</b> This spiritual assistant uses state-of-the-art AI to help you explore and understand your uploaded spiritual documents. 
        With a blend of technology and tradition, this tool assists in connecting you more deeply with your faith.<br>""")

        with gr.Tab("Step 1: Upload PDF"):
            document = gr.Files(label="Upload your PDF documents", file_count="multiple", file_types=["pdf"], interactive=True)

        with gr.Tab("Step 2: Process Document"):
            db_btn = gr.Radio(["ChromaDB"], label="Select Vector Database", value="ChromaDB", info="Choose your vector database")
            with gr.Accordion("Advanced Options: Text Splitter", open=False):
                slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk Size", info="Adjust chunk size for text splitting")
                slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk Overlap", info="Adjust overlap between chunks")
            db_progress = gr.Textbox(label="Vector Database Initialization Status", value="None", interactive=False)
            generate_db_btn = gr.Button("Generate Vector Database")

        with gr.Tab("Step 3 - Initialize QA chain"):
            with gr.Row():
                with gr.Accordion("Advanced options - LLM model", open=False):
                    with gr.Row():
                        slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                    with gr.Row():
                        slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                    with gr.Row():
                        slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None", label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 4: Chatbot"):
            chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
            with gr.Accordion("Advanced: Document References", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2)
                    source1_page = gr.Number(label="Page", interactive=True)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2)
                    source2_page = gr.Number(label="Page", interactive=True)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Reference 3", lines=2)
                    source3_page = gr.Number(label="Page", interactive=True)
            msg = gr.Textbox(placeholder="Type your question here...", label="Ask a Question", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit")
                clear_btn = gr.Button("Clear Conversation")

        # Preprocessing events
        generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(
            initialize_LLM, 
            inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], 
            outputs=[qa_chain, llm_progress]
        ).then(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

        # Chatbot events
        msg.submit(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
        submit_btn.click(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
        clear_btn.click(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

    demo.launch()