import gradio as gr import os from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from pathlib import Path import chromadb from unidecode import unidecode import re # Define MuRIL model and tokenizer muril_tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased") muril_model = AutoModelForMaskedLM.from_pretrained("google/muril-base-cased") # Function to initialize MuRIL pipeline def initialize_muril_pipeline(temperature, max_tokens, top_k): muril_pipeline = pipeline( "text-generation", model=muril_model, tokenizer=muril_tokenizer, torch_dtype=torch.bfloat16, device_map="auto", max_new_tokens=max_tokens, do_sample=True, top_k=top_k, num_return_sequences=1, eos_token_id=muril_tokenizer.eos_token_id ) return muril_pipeline # Load PDF document and create doc splits def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb # Initialize langchain LLM chain using MuRIL def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0.1, desc="Initializing MuRIL model...") muril_pipeline = initialize_muril_pipeline(temperature, max_tokens, top_k) # Integrate pipeline with langchain llm = HuggingFacePipeline(pipeline=muril_pipeline, model_kwargs={'temperature': temperature}) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() progress(0.8, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain # Initialize the LLM chain for your chatbot def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): qa_chain = initialize_llmchain(llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Complete!" # Demo function with Gradio UI def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

BookMyDarshan: Your Personalized Spiritual Assistant

Explore Sacred Texts and Enhance Your Spiritual Journey

""") gr.Markdown( """About BookMyDarshan.in: We are a Hyderabad-based startup dedicated to providing pilgrims with exceptional temple darshan experiences. Our platform offers a comprehensive suite of spiritual and religious services, customized to meet your devotional needs.

Note: This spiritual assistant uses state-of-the-art AI to help you explore and understand your uploaded spiritual documents. With a blend of technology and tradition, this tool assists in connecting you more deeply with your faith.
""") with gr.Tab("Step 1: Upload PDF"): document = gr.Files(label="Upload your PDF documents", file_count="multiple", file_types=["pdf"], interactive=True) with gr.Tab("Step 2: Process Document"): db_btn = gr.Radio(["ChromaDB"], label="Select Vector Database", value="ChromaDB", info="Choose your vector database") with gr.Accordion("Advanced Options: Text Splitter", open=False): slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk Size", info="Adjust chunk size for text splitting") slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk Overlap", info="Adjust overlap between chunks") db_progress = gr.Textbox(label="Vector Database Initialization Status", value="None", interactive=False) generate_db_btn = gr.Button("Generate Vector Database") with gr.Tab("Step 3 - Initialize QA chain"): with gr.Row(): with gr.Accordion("Advanced options - LLM model", open=False): with gr.Row(): slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) with gr.Row(): slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True) with gr.Row(): slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) with gr.Row(): llm_progress = gr.Textbox(value="None", label="QA chain initialization") with gr.Row(): qachain_btn = gr.Button("Initialize Question Answering chain") with gr.Tab("Step 4: Chatbot"): chatbot = gr.Chatbot(label="Chat with your PDF", height=300) with gr.Accordion("Advanced: Document References", open=False): with gr.Row(): doc_source1 = gr.Textbox(label="Reference 1", lines=2) source1_page = gr.Number(label="Page", interactive=True) with gr.Row(): doc_source2 = gr.Textbox(label="Reference 2", lines=2) source2_page = gr.Number(label="Page", interactive=True) with gr.Row(): doc_source3 = gr.Textbox(label="Reference 3", lines=2) source3_page = gr.Number(label="Page", interactive=True) msg = gr.Textbox(placeholder="Type your question here...", label="Ask a Question", container=True) with gr.Row(): submit_btn = gr.Button("Submit") clear_btn = gr.Button("Clear Conversation") # Preprocessing events generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress]) qachain_btn.click( initialize_LLM, inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress] ).then( lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) # Chatbot events msg.submit( conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) submit_btn.click( conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) clear_btn.click( lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) demo.launch()