File size: 3,165 Bytes
e074ee9
0e73f03
e074ee9
 
b57f8d5
7151f63
 
e074ee9
7151f63
 
aa04fb9
 
7151f63
aa04fb9
7151f63
7cc3d8e
 
 
 
 
aa04fb9
7151f63
aa04fb9
7151f63
 
 
 
 
 
7cc3d8e
7151f63
 
 
 
 
 
7cc3d8e
7151f63
 
aa04fb9
7cc3d8e
aa04fb9
7cc3d8e
 
aa04fb9
 
 
 
7cc3d8e
 
7151f63
 
f0b1903
30bfbf8
7151f63
 
 
30bfbf8
7151f63
aa04fb9
b57f8d5
aa04fb9
7151f63
aa04fb9
b57f8d5
e074ee9
7151f63
 
aa04fb9
 
 
 
 
7151f63
 
aa04fb9
e074ee9
b57f8d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
from transformers import AutoModel
from PIL import Image
import torch

# Load JinaAI CLIP model
model = AutoModel.from_pretrained("jinaai/jina-clip-v1", trust_remote_code=True)

# Function to compute similarity
def compute_similarity(input1, input2, input1_type, input2_type):
    # Ensure inputs are valid
    if input1_type == "Text" and (not input1 or input1.strip() == ""):
        return "Error: Input 1 is empty!"
    if input2_type == "Text" and (not input2 or input2.strip() == ""):
        return "Error: Input 2 is empty!"
    if input1_type == "Image" and input1 is None:
        return "Error: Image 1 is missing!"
    if input2_type == "Image" and input2 is None:
        return "Error: Image 2 is missing!"

    # Encode inputs
    inputs = []
    
    if input1_type == "Text":
        text1_embedding = model.encode_text([input1])
        inputs.append(text1_embedding)
    elif input1_type == "Image":
        image1_embedding = model.encode_image([Image.fromarray(input1)])
        inputs.append(image1_embedding)

    if input2_type == "Text":
        text2_embedding = model.encode_text([input2])
        inputs.append(text2_embedding)
    elif input2_type == "Image":
        image2_embedding = model.encode_image([Image.fromarray(input2)])
        inputs.append(image2_embedding)

    # Compute cosine similarity
    similarity_score = (inputs[0] @ inputs[1].T).item()
    return f"Similarity Score: {similarity_score:.4f}"

# Function to toggle input fields dynamically
def update_visibility(input1_type, input2_type):
    return (
        gr.update(visible=(input1_type == "Text")),  # Show text input if Text is selected
        gr.update(visible=(input1_type == "Image")), # Show image input if Image is selected
        gr.update(visible=(input2_type == "Text")),  
        gr.update(visible=(input2_type == "Image"))
    )

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## JinaAI CLIP Multimodal Similarity")

    with gr.Row():
        input1_type = gr.Radio(["Text", "Image"], label="Input 1 Type", value="Text")
        input2_type = gr.Radio(["Text", "Image"], label="Input 2 Type", value="Image")

    with gr.Row():
        input1_text = gr.Textbox(label="Text Input 1", visible=True)
        input1_image = gr.Image(type="numpy", interactive=True, label="Image Input 1", visible=False)

    with gr.Row():
        input2_text = gr.Textbox(label="Text Input 2", visible=False)
        input2_image = gr.Image(type="numpy", interactive=True, label="Image Input 2", visible=True)

    output = gr.Textbox(label="Similarity Score / Error", interactive=False)

    # Toggle visibility of inputs dynamically
    input1_type.change(update_visibility, inputs=[input1_type, input2_type], 
                       outputs=[input1_text, input1_image, input2_text, input2_image])
    input2_type.change(update_visibility, inputs=[input1_type, input2_type], 
                       outputs=[input1_text, input1_image, input2_text, input2_image])

    btn = gr.Button("Compute Similarity")
    btn.click(compute_similarity, inputs=[input1_text, input2_text, input1_type, input2_type], outputs=output)

demo.launch()