Update app.py
Browse files
app.py
CHANGED
|
@@ -2,33 +2,72 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoModel
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
-
import torch.nn.functional as F
|
| 6 |
-
import requests
|
| 7 |
-
from io import BytesIO
|
| 8 |
|
| 9 |
-
# Load
|
| 10 |
-
model = AutoModel.from_pretrained(
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
image_embeds = model.encode_image([image]) # Expecting list input
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
demo.launch()
|
|
|
|
| 2 |
from transformers import AutoModel
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load JinaAI CLIP model
|
| 7 |
+
model = AutoModel.from_pretrained("jinaai/jina-clip-v1", trust_remote_code=True)
|
| 8 |
|
| 9 |
+
# Function to compute similarity
|
| 10 |
+
def compute_similarity(input1, input2, input1_type, input2_type):
|
| 11 |
+
# Check if inputs are empty
|
| 12 |
+
if (input1_type == "Text" and not input1.strip()) or (input1_type == "Image" and input1 is None):
|
| 13 |
+
return "Error: Input 1 is empty!"
|
| 14 |
+
if (input2_type == "Text" and not input2.strip()) or (input2_type == "Image" and input2 is None):
|
| 15 |
+
return "Error: Input 2 is empty!"
|
| 16 |
+
|
| 17 |
+
inputs = []
|
| 18 |
+
|
| 19 |
+
# Process first input
|
| 20 |
+
if input1_type == "Text":
|
| 21 |
+
text1_embedding = model.encode_text([input1])
|
| 22 |
+
inputs.append(text1_embedding)
|
| 23 |
+
elif input1_type == "Image":
|
| 24 |
+
image1_embedding = model.encode_image([Image.fromarray(input1)])
|
| 25 |
+
inputs.append(image1_embedding)
|
| 26 |
+
|
| 27 |
+
# Process second input
|
| 28 |
+
if input2_type == "Text":
|
| 29 |
+
text2_embedding = model.encode_text([input2])
|
| 30 |
+
inputs.append(text2_embedding)
|
| 31 |
+
elif input2_type == "Image":
|
| 32 |
+
image2_embedding = model.encode_image([Image.fromarray(input2)])
|
| 33 |
+
inputs.append(image2_embedding)
|
| 34 |
+
|
| 35 |
+
# Compute cosine similarity
|
| 36 |
+
similarity_score = (inputs[0] @ inputs[1].T).item()
|
| 37 |
+
|
| 38 |
+
return similarity_score
|
| 39 |
|
| 40 |
+
# Gradio UI
|
| 41 |
+
with gr.Blocks() as demo:
|
| 42 |
+
gr.Markdown("## Multimodal Similarity: Text-Text, Text-Image, Image-Image")
|
|
|
|
| 43 |
|
| 44 |
+
with gr.Row():
|
| 45 |
+
input1_type = gr.Radio(["Text", "Image"], label="Input 1 Type", value="Text")
|
| 46 |
+
input2_type = gr.Radio(["Text", "Image"], label="Input 2 Type", value="Image")
|
| 47 |
|
| 48 |
+
with gr.Row():
|
| 49 |
+
input1 = gr.Textbox(label="Text Input 1", visible=True)
|
| 50 |
+
image1 = gr.Image(type="numpy", label="Image Input 1", visible=False)
|
| 51 |
+
|
| 52 |
+
with gr.Row():
|
| 53 |
+
input2 = gr.Textbox(label="Text Input 2", visible=False)
|
| 54 |
+
image2 = gr.Image(type="numpy", label="Image Input 2", visible=True)
|
| 55 |
|
| 56 |
+
output = gr.Textbox(label="Similarity Score / Error", interactive=False)
|
| 57 |
+
|
| 58 |
+
# Function to toggle visibility based on selected types
|
| 59 |
+
def update_visibility(input1_type, input2_type):
|
| 60 |
+
return (
|
| 61 |
+
input1_type == "Text",
|
| 62 |
+
input1_type == "Image",
|
| 63 |
+
input2_type == "Text",
|
| 64 |
+
input2_type == "Image"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
input1_type.change(update_visibility, inputs=[input1_type, input2_type], outputs=[input1, image1, input2, image2])
|
| 68 |
+
input2_type.change(update_visibility, inputs=[input1_type, input2_type], outputs=[input1, image1, input2, image2])
|
| 69 |
+
|
| 70 |
+
btn = gr.Button("Compute Similarity")
|
| 71 |
+
btn.click(compute_similarity, inputs=[input1, input2, input1_type, input2_type], outputs=output)
|
| 72 |
|
| 73 |
demo.launch()
|