Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import CLIPModel, CLIPProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
model_name = "jinaai/jina-clip-v1"
|
8 |
+
model = CLIPModel.from_pretrained(model_name)
|
9 |
+
processor = CLIPProcessor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def compute_similarity(image, text):
|
12 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL image
|
13 |
+
|
14 |
+
# Process inputs
|
15 |
+
inputs = processor(text=[text], images=image, return_tensors="pt", padding=True, truncation=True)
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
logits_per_image = outputs.logits_per_image # Image-to-text similarity
|
20 |
+
similarity_score = logits_per_image.item()
|
21 |
+
|
22 |
+
return similarity_score
|
23 |
+
|
24 |
+
# Gradio UI
|
25 |
+
demo = gr.Interface(
|
26 |
+
fn=compute_similarity,
|
27 |
+
inputs=[gr.Image(type="numpy"), gr.Textbox(label="Enter text")],
|
28 |
+
outputs=gr.Number(label="Similarity Score"),
|
29 |
+
title="CLIP Image-Text Similarity",
|
30 |
+
description="Upload an image and enter a text prompt to get the similarity score."
|
31 |
+
)
|
32 |
+
|
33 |
+
demo.launch()
|