Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import CLIPModel, CLIPFeatureExtractor, BertTokenizer
|
3 |
from PIL import Image
|
4 |
import torch
|
|
|
5 |
|
6 |
# Load model and processors separately
|
7 |
model_name = "jinaai/jina-clip-v1"
|
@@ -17,13 +18,20 @@ def compute_similarity(image, text):
|
|
17 |
|
18 |
# Process text (Remove `token_type_ids`)
|
19 |
text_inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
20 |
-
text_inputs.pop("token_type_ids", None)
|
21 |
|
22 |
with torch.no_grad():
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return similarity_score
|
28 |
|
29 |
# Gradio UI
|
|
|
2 |
from transformers import CLIPModel, CLIPFeatureExtractor, BertTokenizer
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
|
7 |
# Load model and processors separately
|
8 |
model_name = "jinaai/jina-clip-v1"
|
|
|
18 |
|
19 |
# Process text (Remove `token_type_ids`)
|
20 |
text_inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
21 |
+
text_inputs.pop("token_type_ids", None)
|
22 |
|
23 |
with torch.no_grad():
|
24 |
+
# Extract embeddings
|
25 |
+
image_embeds = model.get_image_features(**image_inputs)
|
26 |
+
text_embeds = model.get_text_features(**text_inputs)
|
27 |
+
|
28 |
+
# Normalize embeddings
|
29 |
+
image_embeds = F.normalize(image_embeds, p=2, dim=-1)
|
30 |
+
text_embeds = F.normalize(text_embeds, p=2, dim=-1)
|
31 |
+
|
32 |
+
# Compute cosine similarity
|
33 |
+
similarity_score = (image_embeds @ text_embeds.T).item()
|
34 |
+
|
35 |
return similarity_score
|
36 |
|
37 |
# Gradio UI
|