File size: 1,512 Bytes
246bea3 ba07b60 be13547 ba07b60 be13547 8a7d4b9 ba07b60 246bea3 ba07b60 246bea3 ba07b60 246bea3 ba07b60 246bea3 ba07b60 246bea3 ba07b60 246bea3 ba07b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig
from pydrive2.auth import GoogleAuth
from pydrive2.drive import GoogleDrive
# Authenticate and create the PyDrive client.
gauth = GoogleAuth()
gauth.LocalWebserverAuth() # Creates a local webserver and automatically handles authentication.
drive = GoogleDrive(gauth)
# Update this path to your local path where the model is stored
model_path = '/content/drive/My Drive/bart-base'
try:
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
except Exception as e:
st.error(f"Failed to load model: {e}")
# Streamlit UI
st.title("Text Summarizer")
text = st.text_area("Enter the text to generate its Summary:")
# Configuration for generation
generation_config = GenerationConfig(max_new_tokens=100, do_sample=True, temperature=0.7)
if text:
try:
# Encode input
inputs_encoded = tokenizer(text, return_tensors='pt')
# Generate output
with torch.no_grad():
model_output = model.generate(inputs_encoded["input_ids"], generation_config=generation_config)[0]
# Decode output
output = tokenizer.decode(model_output, skip_special_tokens=True)
# Display results in a box with a title
with st.expander("Output", expanded=True):
st.write(output)
except Exception as e:
st.error(f"An error occurred during summarization: {e}") |