Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,33 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
4 |
import os
|
|
|
5 |
from zipfile import ZipFile
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
9 |
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
with ZipFile(uploaded_file, 'r') as zip_ref:
|
15 |
-
zip_ref.extractall("model_directory")
|
16 |
|
17 |
-
|
18 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
model_path = "model_directory"
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
21 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
@@ -46,4 +58,4 @@ if text:
|
|
46 |
st.write(output)
|
47 |
|
48 |
except Exception as e:
|
49 |
-
st.error(f"An error occurred during summarization: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from pydrive.auth import GoogleAuth
|
5 |
+
from pydrive.drive import GoogleDrive
|
6 |
import os
|
7 |
+
from io import BytesIO
|
8 |
from zipfile import ZipFile
|
9 |
|
10 |
+
# Initialize Google Auth and Drive
|
11 |
+
gauth = GoogleAuth()
|
12 |
+
gauth.LocalWebserverAuth() # Authenticates and opens a browser window
|
13 |
+
drive = GoogleDrive(gauth)
|
14 |
|
15 |
+
# Streamlit UI
|
16 |
+
st.title("Text Summarizer")
|
17 |
|
18 |
+
# Enter the file ID of your model.zip on Google Drive
|
19 |
+
model_file_id = st.text_input("Enter the Google Drive file ID of the model.zip")
|
|
|
|
|
20 |
|
21 |
+
if model_file_id:
|
22 |
try:
|
23 |
+
# Download the file from Google Drive
|
24 |
+
downloaded = drive.CreateFile({'id': model_file_id}).GetContentString()
|
25 |
+
|
26 |
+
# Load the model from the downloaded zip file
|
27 |
+
with ZipFile(BytesIO(downloaded.encode()), 'r') as zip_ref:
|
28 |
+
zip_ref.extractall("model_directory")
|
29 |
+
|
30 |
+
# Load the model from the extracted directory
|
31 |
model_path = "model_directory"
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
33 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
|
|
58 |
st.write(output)
|
59 |
|
60 |
except Exception as e:
|
61 |
+
st.error(f"An error occurred during summarization: {e}")
|