Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import os
|
5 |
+
from zipfile import ZipFile
|
6 |
+
|
7 |
+
# Streamlit UI for uploading model
|
8 |
+
st.title("Text Summarizer")
|
9 |
+
uploaded_file = st.file_uploader("bart-base.zip", type="zip")
|
10 |
+
|
11 |
+
if uploaded_file is not None:
|
12 |
+
# Extract the uploaded zip file
|
13 |
+
with ZipFile(uploaded_file, 'r') as zip_ref:
|
14 |
+
zip_ref.extractall("model_directory")
|
15 |
+
|
16 |
+
# Load the model from the extracted directory
|
17 |
+
try:
|
18 |
+
model_path = "model_directory"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
21 |
+
st.success("Model loaded successfully!")
|
22 |
+
except Exception as e:
|
23 |
+
st.error(f"Failed to load model: {e}")
|
24 |
+
|
25 |
+
# Text area for input
|
26 |
+
text = st.text_area("Enter the text to generate its Summary:")
|
27 |
+
|
28 |
+
# Configuration for generation
|
29 |
+
generation_config = {'max_length': 100, 'do_sample': True, 'temperature': 0.7}
|
30 |
+
|
31 |
+
if text:
|
32 |
+
try:
|
33 |
+
# Encode input
|
34 |
+
inputs_encoded = tokenizer(text, return_tensors='pt')
|
35 |
+
|
36 |
+
# Generate output
|
37 |
+
with torch.no_grad():
|
38 |
+
model_output = model.generate(inputs_encoded["input_ids"], **generation_config)[0]
|
39 |
+
|
40 |
+
# Decode output
|
41 |
+
output = tokenizer.decode(model_output, skip_special_tokens=True)
|
42 |
+
|
43 |
+
# Display results
|
44 |
+
with st.expander("Output", expanded=True):
|
45 |
+
st.write(output)
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"An error occurred during summarization: {e}")
|