waqasali1707 commited on
Commit
246bea3
·
verified ·
1 Parent(s): 750df58

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
+ import os
5
+ from zipfile import ZipFile
6
+
7
+ # Streamlit UI for uploading model
8
+ st.title("Text Summarizer")
9
+ uploaded_file = st.file_uploader("bart-base.zip", type="zip")
10
+
11
+ if uploaded_file is not None:
12
+ # Extract the uploaded zip file
13
+ with ZipFile(uploaded_file, 'r') as zip_ref:
14
+ zip_ref.extractall("model_directory")
15
+
16
+ # Load the model from the extracted directory
17
+ try:
18
+ model_path = "model_directory"
19
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
20
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
21
+ st.success("Model loaded successfully!")
22
+ except Exception as e:
23
+ st.error(f"Failed to load model: {e}")
24
+
25
+ # Text area for input
26
+ text = st.text_area("Enter the text to generate its Summary:")
27
+
28
+ # Configuration for generation
29
+ generation_config = {'max_length': 100, 'do_sample': True, 'temperature': 0.7}
30
+
31
+ if text:
32
+ try:
33
+ # Encode input
34
+ inputs_encoded = tokenizer(text, return_tensors='pt')
35
+
36
+ # Generate output
37
+ with torch.no_grad():
38
+ model_output = model.generate(inputs_encoded["input_ids"], **generation_config)[0]
39
+
40
+ # Decode output
41
+ output = tokenizer.decode(model_output, skip_special_tokens=True)
42
+
43
+ # Display results
44
+ with st.expander("Output", expanded=True):
45
+ st.write(output)
46
+
47
+ except Exception as e:
48
+ st.error(f"An error occurred during summarization: {e}")