Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
-
from
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
from zipfile import ZipFile
|
9 |
-
|
10 |
-
# Initialize Google Auth and Drive
|
11 |
gauth = GoogleAuth()
|
12 |
-
gauth.LocalWebserverAuth() #
|
13 |
drive = GoogleDrive(gauth)
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
# Enter the file ID of your model.zip on Google Drive
|
19 |
-
model_file_id = st.text_input("Enter the Google Drive file ID of the model.zip")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Load the model from the downloaded zip file
|
27 |
-
with ZipFile(BytesIO(downloaded.encode()), 'r') as zip_ref:
|
28 |
-
zip_ref.extractall("model_directory")
|
29 |
-
|
30 |
-
# Load the model from the extracted directory
|
31 |
-
model_path = "model_directory"
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
33 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
34 |
-
st.success("Model loaded successfully!")
|
35 |
-
except Exception as e:
|
36 |
-
st.error(f"Failed to load model: {e}")
|
37 |
|
38 |
-
#
|
|
|
39 |
text = st.text_area("Enter the text to generate its Summary:")
|
40 |
|
41 |
# Configuration for generation
|
42 |
-
generation_config =
|
43 |
|
44 |
if text:
|
45 |
try:
|
@@ -48,14 +32,14 @@ if text:
|
|
48 |
|
49 |
# Generate output
|
50 |
with torch.no_grad():
|
51 |
-
model_output = model.generate(inputs_encoded["input_ids"],
|
52 |
|
53 |
# Decode output
|
54 |
output = tokenizer.decode(model_output, skip_special_tokens=True)
|
55 |
|
56 |
-
# Display results
|
57 |
with st.expander("Output", expanded=True):
|
58 |
st.write(output)
|
59 |
|
60 |
except Exception as e:
|
61 |
-
st.error(f"An error occurred during summarization: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig
|
4 |
+
from pydrive2.auth import GoogleAuth
|
5 |
+
from pydrive2.drive import GoogleDrive
|
6 |
+
|
7 |
+
# Authenticate and create the PyDrive client.
|
|
|
|
|
|
|
8 |
gauth = GoogleAuth()
|
9 |
+
gauth.LocalWebserverAuth() # Creates a local webserver and automatically handles authentication.
|
10 |
drive = GoogleDrive(gauth)
|
11 |
|
12 |
+
# Update this path to your local path where the model is stored
|
13 |
+
model_path = '/content/drive/My Drive/bart-base'
|
|
|
|
|
|
|
14 |
|
15 |
+
try:
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
18 |
+
except Exception as e:
|
19 |
+
st.error(f"Failed to load model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Streamlit UI
|
22 |
+
st.title("Text Summarizer")
|
23 |
text = st.text_area("Enter the text to generate its Summary:")
|
24 |
|
25 |
# Configuration for generation
|
26 |
+
generation_config = GenerationConfig(max_new_tokens=100, do_sample=True, temperature=0.7)
|
27 |
|
28 |
if text:
|
29 |
try:
|
|
|
32 |
|
33 |
# Generate output
|
34 |
with torch.no_grad():
|
35 |
+
model_output = model.generate(inputs_encoded["input_ids"], generation_config=generation_config)[0]
|
36 |
|
37 |
# Decode output
|
38 |
output = tokenizer.decode(model_output, skip_special_tokens=True)
|
39 |
|
40 |
+
# Display results in a box with a title
|
41 |
with st.expander("Output", expanded=True):
|
42 |
st.write(output)
|
43 |
|
44 |
except Exception as e:
|
45 |
+
st.error(f"An error occurred during summarization: {e}")
|