File size: 9,894 Bytes
2ab37d9 e68321e 5921178 e68321e 5921178 e68321e b3d2362 e68321e adb494a c772933 adb494a 288c79f c772933 a9fc615 e68321e a9fc615 e68321e 875a842 e68321e 5921178 e68321e b3d2362 e68321e 20a9f94 abb03da 20a9f94 abb03da 97e57b1 061f56b abb03da 57b1f09 309f60d d3a8f09 76c4600 97e57b1 76c4600 20a9f94 5f65abf 20a9f94 a9fc615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
#ref: https://huggingface.co/spaces/Prgckwb/dicom-viewer/blob/main/app.py
#ref: https://huggingface.co/spaces/basilshaji/Lung_Nodule_Segmentation
import gradio as gr
import numpy as np
import polars as pl
import pydicom
from PIL import Image
from pydicom.errors import InvalidDicomError
import gradio as gr
import cv2
import requests
import os
import torch
import numpy as np
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression
from yolov5.utils.augmentations import letterbox
'''
# Example URLs for downloading images
file_urls = [
"https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
"https://www.dropbox.com/scl/fi/asrmao4b4fpsrhqex8kog/2_jpg.rf.b87583d95aa220d4b7b532ae1948e7b7.jpg?rlkey=jkmux5jjy8euzhxizupdmpesb&st=v3ld14tx&dl=0",
"https://www.dropbox.com/scl/fi/fi0e8zxqqy06asnu0robz/3_jpg.rf.d2932cce7e88c2675e300ececf9f1b82.jpg?rlkey=hfdqwxkxetabe38ukzbb39pl5&st=ga1uouhj&dl=0",
"https://www.dropbox.com/scl/fi/ruobyat1ld1c33ch5yjpv/4_jpg.rf.3395c50b4db0ec0ed3448276965b2459.jpg?rlkey=j1m4qa0pmdh3rlr344v82u3am&st=lex8h3qi&dl=0",
"https://www.dropbox.com/scl/fi/ok3izk4jj1pg6psxja3aj/5_jpg.rf.62f3dc64b6c894fbb165d8f6e2ee1382.jpg?rlkey=euu16z8fd8u8za4aflvu5qg4v&st=pwno39nc&dl=0",
"https://www.dropbox.com/scl/fi/8r1fpwxkwq7c2i6ky6qv5/10_jpg.rf.c1785c33dd3552e860bf043c2fd0a379.jpg?rlkey=fcw41ppgzu0ao7xo6ijbpdi4c&st=to2udvxb&dl=0",
"https://www.dropbox.com/scl/fi/ihiid7hbz1vvaoqrstwa5/7_jpg.rf.dfc30f9dc198cf6697d9023ac076e822.jpg?rlkey=yh67p4ex52wn9t0bfw0jr77ef&st=02qw80xa&dl=0",
]
def download_file(url, save_name):
"""Downloads a file from a URL."""
if not os.path.exists(save_name):
file = requests.get(url)
with open(save_name, 'wb') as f:
f.write(file.content)
# Download images
for i, url in enumerate(file_urls):
download_file(url, f"image_{i}.jpg")
'''
# Load YOLOv5 model (placeholder)
model_path = "best.pt" # Path to your YOLOv5 model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available
model = attempt_load(model_path, device=device) # Placeholder for model loading
model.eval() # Set the model to evaluation mode
#def preprocess_image(image_path):
def preprocess_image(image):
#img0 = cv2.imread(image_path)
print("in preprocess-0 image.shape:",image.shape)
img0 = letterbox(image, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
print("in preprocess-1 img.shape:",img.shape)
img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
#img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB,
img = img.unsqueeze(0)
return img, img0
def infer(model, img):
with torch.no_grad():
pred = model(img)[0]
return pred
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
coords[:, :4].clip_(min=0, max=img1_shape[0]) # clip boxes
return coords
def postprocess(pred, img0_shape, img):
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False)
results = []
for det in pred: # detections per image
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0_shape).round()
for *xyxy, conf, cls in reversed(det):
results.append((xyxy, conf, cls))
return results
def detect_objects(image_path):
dicom_image, dicom_meta = read_and_preprocess_dicom(image_path)
#img, img0 = preprocess_image(image_path)
img, img0 = preprocess_image(dicom_image)
pred = infer(model, img)
results = postprocess(pred, img0.shape, img)
return results
def draw_bounding_boxes(img, results):
for (x1, y1, x2, y2), conf, cls in results:
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(img, f'{model.names[int(cls)]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
return img
def show_preds_image(filepath):
results = detect_objects(filepath)
img0 = cv2.imread(filepath)
img_with_boxes = draw_bounding_boxes(img0, results)
return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
'''
# Define Gradio components
input_component = gr.components.Image(type="filepath", label="Input Image")
output_component = gr.components.Image(type="numpy", label="Output Image")
# Create Gradio interface
interface = gr.Interface(
fn=show_preds_image,
inputs=input_component,
outputs=output_component,
title="Lung Nodule Detection [ Segmentation Model ]",
examples=[
"image_1.jpg",
"image_2.jpg",
"image_3.jpg",
"image_4.jpg",
"image_5.jpg",
"image_6.jpg",
],
description=' "This online deployment proves the effectiveness and efficient function of the machine learning model in identifying lung cancer nodules. The implementation of YOLO for core detection tasks is employed that is an efficient and accurate algorithm for object detection. Through the precise hyper-parameter tuning process, the model proposed in this paper has given an impressive boost in the performance. Moreover, the model uses Retinanet algorithm which is recognized as the powerful tool effective in dense object detection. In an attempt to enhance the model’s performance, the backbone of this architecture consists of a Feature Pyramid Network (FPN). The FPN plays an important role in boosting the model’s capacity in recognizing objects in different scales through the construction of high semantic feature map in different resolutions. In conclusion, this deployment encompasses YOLOv5, hyperparameter optimization, Retinanet, and FPN as one of the most effective and modern solutions for the detection of lung cancer nodules." ~ Basil Shaji 😇',
live=False,
)
interface.launch()
'''
def read_and_preprocess_dicom(file_path: str):
"""
Function to read and preprocess DICOM files
:param file_path: Path to the DICOM file
:return: Image data (in CV2 format) and metadata (in pandas DataFrame format)
"""
try:
# Read the DICOM file
dicom_data = pydicom.dcmread(file_path)
except InvalidDicomError:
raise gr.Error("The uploaded file is not a valid DICOM file.")
# Get the pixel data
try:
pixel_array = dicom_data.pixel_array
except AttributeError:
raise gr.Error("The uploaded DICOM file has no pixel data.")
# Normalize the pixel data to 8-bit and convert to a PIL image
if pixel_array.dtype != np.uint8:
pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
np.uint8)
image_pil = Image.fromarray(pixel_array)
# asarray() class is used to convert
# PIL images into NumPy arrays
numpydata = np.asarray(image_pil)
#convert to cv2 format
numpydata = numpydata.reshape((numpydata.shape[0], numpydata.shape[1], 1))
print("In preprocess dicom:", numpydata.shape)
#image = np.array(numpydata)[::-1].copy()
image = np.array(numpydata)[:,:,::-1].copy()
# <class 'numpy.ndarray'>
print(type(numpydata))
# shape
print("numpydata.shape:",numpydata.shape)
# Collect metadata in dictionary format and convert to DataFrame
metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
df_metadata = pl.DataFrame({
"Key": list(metadata_dict.keys()),
"Value": list(metadata_dict.values())
})
return image, df_metadata.to_pandas() # Convert to pandas DataFrame for Gradio compatibility
def build_interface():
"""
Function to build the Gradio interface
"""
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.emerald,
secondary_hue=gr.themes.colors.emerald
)
with gr.Blocks(title='DICOM Viewer', theme=theme) as demo:
gr.Markdown(
"""
# DICOM Viewer
This app reads a DICOM file and displays the image and metadata.
"""
)
with gr.Column():
file_path = gr.File(label="Input DICOM Data")
with gr.Row():
dicom_image = gr.Image(type="pil", label="DICOM Image")
dicom_meta = gr.Dataframe(headers=None, label="Metadata")
inputs = [file_path]
outputs = [dicom_image, dicom_meta]
file_path.upload(fn=read_and_preprocess_dicom, inputs=inputs, outputs=outputs)
clear_button = gr.ClearButton(components=inputs + outputs, )
example = gr.Examples(
['samples/81_80.dcm','samples/110_109.dcm','samples/189_188.dcm'],
inputs=inputs,
#outputs=outputs,
outputs=dicom_image,
#fn=read_and_preprocess_dicom,
fn=show_preds_image,
cache_examples=True
)
return demo
if __name__ == '__main__':
demo = build_interface()
demo.launch
|