Update app.py
Browse files
app.py
CHANGED
@@ -162,11 +162,22 @@ def read_and_preprocess_dicom(file_path: str):
|
|
162 |
pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
|
163 |
np.uint8)
|
164 |
image_pil = Image.fromarray(pixel_array)
|
|
|
|
|
|
|
|
|
165 |
#convert to cv2 format
|
166 |
image_pil = image_pil.reshape((image_pil.shape[0], image_pil.shape[1], 1))
|
167 |
print("In preprocess dicom:", image_pil.shape)
|
168 |
image = np.array(image_pil)[::-1].copy()
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
# Collect metadata in dictionary format and convert to DataFrame
|
171 |
metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
|
172 |
df_metadata = pl.DataFrame({
|
|
|
162 |
pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
|
163 |
np.uint8)
|
164 |
image_pil = Image.fromarray(pixel_array)
|
165 |
+
|
166 |
+
# asarray() class is used to convert
|
167 |
+
# PIL images into NumPy arrays
|
168 |
+
numpydata = asarray(image_pil)
|
169 |
#convert to cv2 format
|
170 |
image_pil = image_pil.reshape((image_pil.shape[0], image_pil.shape[1], 1))
|
171 |
print("In preprocess dicom:", image_pil.shape)
|
172 |
image = np.array(image_pil)[::-1].copy()
|
173 |
|
174 |
+
)
|
175 |
+
|
176 |
+
# <class 'numpy.ndarray'>
|
177 |
+
print(type(numpydata))
|
178 |
+
|
179 |
+
# shape
|
180 |
+
print(numpydata.shape)
|
181 |
# Collect metadata in dictionary format and convert to DataFrame
|
182 |
metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
|
183 |
df_metadata = pl.DataFrame({
|