wangjin2000 commited on
Commit
5921178
·
verified ·
1 Parent(s): 15b9cc6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -18,7 +18,7 @@ from yolov5.models.experimental import attempt_load
18
  from yolov5.utils.general import non_max_suppression
19
  from yolov5.utils.augmentations import letterbox
20
 
21
-
22
  # Example URLs for downloading images
23
  file_urls = [
24
  "https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
@@ -40,7 +40,7 @@ def download_file(url, save_name):
40
  # Download images
41
  for i, url in enumerate(file_urls):
42
  download_file(url, f"image_{i}.jpg")
43
-
44
 
45
  # Load YOLOv5 model (placeholder)
46
  model_path = "best.pt" # Path to your YOLOv5 model
@@ -113,7 +113,7 @@ def show_preds_image(filepath):
113
  img0 = cv2.imread(filepath)
114
  img_with_boxes = draw_bounding_boxes(img0, results)
115
  return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
116
-
117
  # Define Gradio components
118
  input_component = gr.components.Image(type="filepath", label="Input Image")
119
  output_component = gr.components.Image(type="numpy", label="Output Image")
@@ -163,6 +163,8 @@ def read_and_preprocess_dicom(file_path: str):
163
  np.uint8)
164
  image_pil = Image.fromarray(pixel_array)
165
  #convert to cv2 format
 
 
166
  image = np.array(image_pil)[::-1].copy()
167
 
168
  # Collect metadata in dictionary format and convert to DataFrame
 
18
  from yolov5.utils.general import non_max_suppression
19
  from yolov5.utils.augmentations import letterbox
20
 
21
+ '''
22
  # Example URLs for downloading images
23
  file_urls = [
24
  "https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
 
40
  # Download images
41
  for i, url in enumerate(file_urls):
42
  download_file(url, f"image_{i}.jpg")
43
+ '''
44
 
45
  # Load YOLOv5 model (placeholder)
46
  model_path = "best.pt" # Path to your YOLOv5 model
 
113
  img0 = cv2.imread(filepath)
114
  img_with_boxes = draw_bounding_boxes(img0, results)
115
  return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
116
+ '''
117
  # Define Gradio components
118
  input_component = gr.components.Image(type="filepath", label="Input Image")
119
  output_component = gr.components.Image(type="numpy", label="Output Image")
 
163
  np.uint8)
164
  image_pil = Image.fromarray(pixel_array)
165
  #convert to cv2 format
166
+ image_pil = image_pil.reshape((image_pil.shape[0], image_pil.shape[1], 1))
167
+ print("In preprocess dicom:", image_pil.shape)
168
  image = np.array(image_pil)[::-1].copy()
169
 
170
  # Collect metadata in dictionary format and convert to DataFrame