Update app.py
Browse files
app.py
CHANGED
@@ -48,19 +48,19 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU
|
|
48 |
model = attempt_load(model_path, device=device) # Placeholder for model loading
|
49 |
model.eval() # Set the model to evaluation mode
|
50 |
|
51 |
-
|
52 |
-
def preprocess_image(image):
|
53 |
-
|
54 |
-
img0 = letterbox(image, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
55 |
img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
56 |
-
|
57 |
-
|
58 |
img = np.ascontiguousarray(img)
|
59 |
img = torch.from_numpy(img).to(device)
|
60 |
img = img.float() # uint8 to fp16/32
|
61 |
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
62 |
if img.ndimension() == 3:
|
63 |
-
img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB,
|
64 |
img = img.unsqueeze(0)
|
65 |
return img, img0
|
66 |
|
@@ -113,7 +113,7 @@ def show_preds_image(filepath):
|
|
113 |
img0 = cv2.imread(filepath)
|
114 |
img_with_boxes = draw_bounding_boxes(img0, results)
|
115 |
return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
|
116 |
-
|
117 |
# Define Gradio components
|
118 |
input_component = gr.components.Image(type="filepath", label="Input Image")
|
119 |
output_component = gr.components.Image(type="numpy", label="Output Image")
|
@@ -219,4 +219,5 @@ def build_interface():
|
|
219 |
|
220 |
if __name__ == '__main__':
|
221 |
demo = build_interface()
|
222 |
-
demo.launch
|
|
|
|
48 |
model = attempt_load(model_path, device=device) # Placeholder for model loading
|
49 |
model.eval() # Set the model to evaluation mode
|
50 |
|
51 |
+
def preprocess_image(image_path):
|
52 |
+
#def preprocess_image(image):
|
53 |
+
img0 = cv2.imread(image_path)
|
54 |
+
#img0 = letterbox(image, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
55 |
img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
56 |
+
print("in preprocess:",img.shape)
|
57 |
+
img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, to 3x416x416
|
58 |
img = np.ascontiguousarray(img)
|
59 |
img = torch.from_numpy(img).to(device)
|
60 |
img = img.float() # uint8 to fp16/32
|
61 |
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
62 |
if img.ndimension() == 3:
|
63 |
+
#img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB,
|
64 |
img = img.unsqueeze(0)
|
65 |
return img, img0
|
66 |
|
|
|
113 |
img0 = cv2.imread(filepath)
|
114 |
img_with_boxes = draw_bounding_boxes(img0, results)
|
115 |
return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
|
116 |
+
|
117 |
# Define Gradio components
|
118 |
input_component = gr.components.Image(type="filepath", label="Input Image")
|
119 |
output_component = gr.components.Image(type="numpy", label="Output Image")
|
|
|
219 |
|
220 |
if __name__ == '__main__':
|
221 |
demo = build_interface()
|
222 |
+
demo.launch
|
223 |
+
'''
|