Spaces:
Sleeping
Sleeping
File size: 10,120 Bytes
f1586e3 67b3686 f91cc3b 8903db2 0f8445a 5a09d5c 8903db2 4660a83 5a09d5c 8108db5 f1586e3 4660a83 0452175 a47c92e 0452175 d3e32db 4660a83 a47c92e f68ac31 4660a83 62b3157 7842508 4660a83 7842508 8903db2 4660a83 f944585 4660a83 7842508 97889da 4660a83 97889da 4660a83 97889da 4660a83 97889da 7842508 4660a83 d3e32db 4660a83 cb9a068 4660a83 97889da 7842508 cc0b0d6 7842508 4660a83 62b3157 a47c92e 4660a83 218a8a7 4660a83 97889da 218a8a7 4660a83 218a8a7 f99a008 a47c92e 97889da a47c92e 218a8a7 a47c92e 218a8a7 a47c92e cc0b0d6 a47c92e f1586e3 f68ac31 67b3686 218a8a7 f1586e3 b45a04f 4660a83 67b3686 b45a04f 67b3686 62b3157 4660a83 62b3157 b45a04f 67b3686 97889da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import os
from datasets import load_from_disk, Dataset
import torch
import logging
import pandas as pd
import arxiv
import requests
import xml.etree.ElementTree as ET
# Configure logging
logging.basicConfig(level=logging.INFO)
# Define data paths and constants
DATA_DIR = "/data" if os.path.exists("/data") else "."
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
MODEL_PATH = "t5-small" # Changed to T5-small for better CPU compatibility
@st.cache_resource
def load_local_model():
"""Load the local Hugging Face model"""
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_PATH,
device_map={"": "cpu"}, # Force CPU
torch_dtype=torch.float32
)
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None, None
def fetch_arxiv_papers(query, max_results=5):
"""Fetch papers from arXiv"""
client = arxiv.Client()
# Always include autism in the search query
search_query = f"(ti:autism OR abs:autism) AND (ti:\"{query}\" OR abs:\"{query}\") AND cat:q-bio"
# Search arXiv
search = arxiv.Search(
query=search_query,
max_results=max_results,
sort_by=arxiv.SortCriterion.Relevance
)
papers = []
for result in client.results(search):
# Only include papers that mention autism in title or abstract
if ('autism' in result.title.lower() or
'asd' in result.title.lower() or
'autism' in result.summary.lower() or
'asd' in result.summary.lower()):
papers.append({
'title': result.title,
'abstract': result.summary,
'url': result.pdf_url,
'published': result.published.strftime("%Y-%m-%d"),
'relevance_score': 1 if 'autism' in result.title.lower() else 0.5
})
return papers
def fetch_pubmed_papers(query, max_results=5):
"""Fetch papers from PubMed"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
# Always include autism in the search term
search_term = f"(autism[Title/Abstract] OR ASD[Title/Abstract]) AND ({query}[Title/Abstract])"
# Search for papers
search_url = f"{base_url}/esearch.fcgi"
search_params = {
'db': 'pubmed',
'term': search_term,
'retmax': max_results,
'sort': 'relevance',
'retmode': 'xml'
}
papers = []
try:
# Get paper IDs
response = requests.get(search_url, params=search_params)
root = ET.fromstring(response.content)
id_list = [id_elem.text for id_elem in root.findall('.//Id')]
if not id_list:
return papers
# Fetch paper details
fetch_url = f"{base_url}/efetch.fcgi"
fetch_params = {
'db': 'pubmed',
'id': ','.join(id_list),
'retmode': 'xml'
}
response = requests.get(fetch_url, params=fetch_params)
articles = ET.fromstring(response.content)
for article in articles.findall('.//PubmedArticle'):
title = article.find('.//ArticleTitle')
abstract = article.find('.//Abstract/AbstractText')
year = article.find('.//PubDate/Year')
pmid = article.find('.//PMID')
if title is not None and abstract is not None:
title_text = title.text.lower()
abstract_text = abstract.text.lower()
# Only include papers that mention autism
if ('autism' in title_text or 'asd' in title_text or
'autism' in abstract_text or 'asd' in abstract_text):
papers.append({
'title': title.text,
'abstract': abstract.text,
'url': f"https://pubmed.ncbi.nlm.nih.gov/{pmid.text}/",
'published': year.text if year is not None else 'Unknown',
'relevance_score': 1 if ('autism' in title_text or 'asd' in title_text) else 0.5
})
except Exception as e:
st.error(f"Error fetching PubMed papers: {str(e)}")
return papers
def search_research_papers(query):
"""Search both arXiv and PubMed for papers"""
arxiv_papers = fetch_arxiv_papers(query)
pubmed_papers = fetch_pubmed_papers(query)
# Combine and format papers
all_papers = []
for paper in arxiv_papers + pubmed_papers:
if paper['abstract'] and len(paper['abstract'].strip()) > 0:
# Check if the paper is actually about autism
if ('autism' in paper['title'].lower() or
'asd' in paper['title'].lower() or
'autism' in paper['abstract'].lower() or
'asd' in paper['abstract'].lower()):
all_papers.append({
'title': paper['title'],
'text': f"Title: {paper['title']}\n\nAbstract: {paper['abstract']}",
'url': paper['url'],
'published': paper['published'],
'relevance_score': paper.get('relevance_score', 0.5)
})
# Sort papers by relevance score and convert to DataFrame
all_papers.sort(key=lambda x: x['relevance_score'], reverse=True)
df = pd.DataFrame(all_papers)
if df.empty:
st.warning("No autism-related papers found. Please try a different search term.")
return pd.DataFrame(columns=['title', 'text', 'url', 'published', 'relevance_score'])
return df
def generate_answer(question, context, max_length=512):
"""Generate a comprehensive answer using the local model"""
model, tokenizer = load_local_model()
if model is None or tokenizer is None:
return "Error: Could not load the model. Please try again later."
# Format the context as a structured query
prompt = f"""You are an expert in autism research. Provide a comprehensive answer about autism, incorporating both general knowledge and specific research findings when available.
Question: {question}
Recent Research Context:
{context}
Instructions: Provide a detailed response that:
1. Starts with a general overview of the topic as it relates to autism
2. Incorporates specific findings from the provided research papers when relevant
3. Discusses practical implications for individuals with autism and their families
4. Mentions any limitations in current understanding
If the research papers don't directly address the question, focus on providing general, well-established information about autism while noting what specific research would be helpful."""
try:
# Generate response
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_length=max_length,
min_length=150, # Increased minimum length for more comprehensive answers
num_beams=4,
length_penalty=1.5,
temperature=0.7,
repetition_penalty=1.2,
early_stopping=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# If response is too short or empty, provide a general overview
if len(response.strip()) < 100:
return f"""Here's what we know about autism in relation to your question about {question}:
1. General Understanding:
- Autism Spectrum Disorder (ASD) is a complex developmental condition
- It affects how a person communicates, learns, and interacts with others
- Each person with autism has unique strengths and challenges
2. Key Aspects:
- Communication and social interaction
- Repetitive behaviors and specific interests
- Sensory sensitivities
- Early intervention is important
3. Current Research:
While the provided research papers don't directly address your specific question, researchers are actively studying various aspects of autism to better understand its causes, characteristics, and effective interventions.
For more specific information, try asking about:
- Specific symptoms or characteristics
- Diagnostic processes
- Treatment approaches
- Current research in specific areas"""
# Format the response for better readability
formatted_response = response.replace(". ", ".\n").replace("• ", "\n• ")
return formatted_response
except Exception as e:
st.error(f"Error generating response: {str(e)}")
return "Error: Could not generate response. Please try again with a different question."
# Streamlit App
st.title("🧩 AMA Autism")
st.write("""
This app searches through scientific papers to answer your questions about autism.
For best results, be specific in your questions.
""")
query = st.text_input("Please ask me anything about autism ✨")
if query:
with st.status("Searching for answers...") as status:
# Search for papers
df = search_research_papers(query)
st.write("Searching for data in PubMed and arXiv...")
st.write(f"Found {len(df)} relevant papers!")
# Get relevant context
context = "\n".join([
f"{text[:1000]}" for text in df['text'].head(3)
])
# Generate answer
st.write("Generating answer...")
answer = generate_answer(query, context)
# Display paper sources
with st.expander("View source papers"):
for _, paper in df.iterrows():
st.markdown(f"- [{paper['title']}]({paper['url']}) ({paper['published']})")
st.success("Answer found!")
st.markdown(answer) |