Spaces:
Sleeping
Sleeping
fix: dataframes
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
import os
|
4 |
-
from datasets import load_from_disk
|
5 |
import torch
|
6 |
import logging
|
|
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
@@ -29,7 +30,13 @@ def load_dataset():
|
|
29 |
import faiss_index.index as idx
|
30 |
papers = idx.fetch_arxiv_papers("autism research", max_results=100)
|
31 |
idx.build_faiss_index(papers, dataset_dir=DATASET_DIR)
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def generate_answer(question, context, max_length=200):
|
35 |
tokenizer, model = load_models()
|
@@ -46,12 +53,16 @@ def generate_answer(question, context, max_length=200):
|
|
46 |
|
47 |
# Get model predictions
|
48 |
with torch.no_grad():
|
49 |
-
outputs = model(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
return answer if answer and not answer.isspace() else "I cannot find a specific answer to this question in the provided context."
|
56 |
|
57 |
# Streamlit App
|
@@ -61,12 +72,11 @@ query = st.text_input("Please ask me anything about autism ✨")
|
|
61 |
if query:
|
62 |
with st.status("Searching for answers..."):
|
63 |
# Load dataset
|
64 |
-
|
65 |
|
66 |
# Get relevant context
|
67 |
context = "\n".join([
|
68 |
-
f"{
|
69 |
-
for paper in dataset[:3]
|
70 |
])
|
71 |
|
72 |
# Generate answer
|
@@ -77,9 +87,9 @@ if query:
|
|
77 |
st.write(answer)
|
78 |
|
79 |
st.write("### Sources Used:")
|
80 |
-
for
|
81 |
-
st.write(f"**Title:** {
|
82 |
-
st.write(f"**Summary:** {
|
83 |
st.write("---")
|
84 |
else:
|
85 |
st.warning("I couldn't find a specific answer in the research papers. Try rephrasing your question.")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
import os
|
4 |
+
from datasets import load_from_disk, Dataset
|
5 |
import torch
|
6 |
import logging
|
7 |
+
import pandas as pd
|
8 |
|
9 |
# Configure logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
|
|
30 |
import faiss_index.index as idx
|
31 |
papers = idx.fetch_arxiv_papers("autism research", max_results=100)
|
32 |
idx.build_faiss_index(papers, dataset_dir=DATASET_DIR)
|
33 |
+
|
34 |
+
# Load and convert to pandas for easier handling
|
35 |
+
dataset = load_from_disk(DATASET_PATH)
|
36 |
+
return pd.DataFrame({
|
37 |
+
'title': dataset['title'],
|
38 |
+
'text': dataset['text']
|
39 |
+
})
|
40 |
|
41 |
def generate_answer(question, context, max_length=200):
|
42 |
tokenizer, model = load_models()
|
|
|
53 |
|
54 |
# Get model predictions
|
55 |
with torch.no_grad():
|
56 |
+
outputs = model.generate(
|
57 |
+
inputs["input_ids"],
|
58 |
+
max_length=max_length,
|
59 |
+
min_length=30,
|
60 |
+
num_beams=4,
|
61 |
+
length_penalty=2.0,
|
62 |
+
early_stopping=True
|
63 |
+
)
|
64 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
+
|
66 |
return answer if answer and not answer.isspace() else "I cannot find a specific answer to this question in the provided context."
|
67 |
|
68 |
# Streamlit App
|
|
|
72 |
if query:
|
73 |
with st.status("Searching for answers..."):
|
74 |
# Load dataset
|
75 |
+
df = load_dataset()
|
76 |
|
77 |
# Get relevant context
|
78 |
context = "\n".join([
|
79 |
+
f"{text[:1000]}" for text in df['text'].head(3)
|
|
|
80 |
])
|
81 |
|
82 |
# Generate answer
|
|
|
87 |
st.write(answer)
|
88 |
|
89 |
st.write("### Sources Used:")
|
90 |
+
for _, row in df.head(3).iterrows():
|
91 |
+
st.write(f"**Title:** {row['title']}")
|
92 |
+
st.write(f"**Summary:** {row['text'][:200]}...")
|
93 |
st.write("---")
|
94 |
else:
|
95 |
st.warning("I couldn't find a specific answer in the research papers. Try rephrasing your question.")
|