Spaces:
Sleeping
Sleeping
fix: dataframes
Browse files
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
import os
|
| 4 |
-
from datasets import load_from_disk
|
| 5 |
import torch
|
| 6 |
import logging
|
|
|
|
| 7 |
|
| 8 |
# Configure logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -29,7 +30,13 @@ def load_dataset():
|
|
| 29 |
import faiss_index.index as idx
|
| 30 |
papers = idx.fetch_arxiv_papers("autism research", max_results=100)
|
| 31 |
idx.build_faiss_index(papers, dataset_dir=DATASET_DIR)
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def generate_answer(question, context, max_length=200):
|
| 35 |
tokenizer, model = load_models()
|
|
@@ -46,12 +53,16 @@ def generate_answer(question, context, max_length=200):
|
|
| 46 |
|
| 47 |
# Get model predictions
|
| 48 |
with torch.no_grad():
|
| 49 |
-
outputs = model(
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
return answer if answer and not answer.isspace() else "I cannot find a specific answer to this question in the provided context."
|
| 56 |
|
| 57 |
# Streamlit App
|
|
@@ -61,12 +72,11 @@ query = st.text_input("Please ask me anything about autism ✨")
|
|
| 61 |
if query:
|
| 62 |
with st.status("Searching for answers..."):
|
| 63 |
# Load dataset
|
| 64 |
-
|
| 65 |
|
| 66 |
# Get relevant context
|
| 67 |
context = "\n".join([
|
| 68 |
-
f"{
|
| 69 |
-
for paper in dataset[:3]
|
| 70 |
])
|
| 71 |
|
| 72 |
# Generate answer
|
|
@@ -77,9 +87,9 @@ if query:
|
|
| 77 |
st.write(answer)
|
| 78 |
|
| 79 |
st.write("### Sources Used:")
|
| 80 |
-
for
|
| 81 |
-
st.write(f"**Title:** {
|
| 82 |
-
st.write(f"**Summary:** {
|
| 83 |
st.write("---")
|
| 84 |
else:
|
| 85 |
st.warning("I couldn't find a specific answer in the research papers. Try rephrasing your question.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
import os
|
| 4 |
+
from datasets import load_from_disk, Dataset
|
| 5 |
import torch
|
| 6 |
import logging
|
| 7 |
+
import pandas as pd
|
| 8 |
|
| 9 |
# Configure logging
|
| 10 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 30 |
import faiss_index.index as idx
|
| 31 |
papers = idx.fetch_arxiv_papers("autism research", max_results=100)
|
| 32 |
idx.build_faiss_index(papers, dataset_dir=DATASET_DIR)
|
| 33 |
+
|
| 34 |
+
# Load and convert to pandas for easier handling
|
| 35 |
+
dataset = load_from_disk(DATASET_PATH)
|
| 36 |
+
return pd.DataFrame({
|
| 37 |
+
'title': dataset['title'],
|
| 38 |
+
'text': dataset['text']
|
| 39 |
+
})
|
| 40 |
|
| 41 |
def generate_answer(question, context, max_length=200):
|
| 42 |
tokenizer, model = load_models()
|
|
|
|
| 53 |
|
| 54 |
# Get model predictions
|
| 55 |
with torch.no_grad():
|
| 56 |
+
outputs = model.generate(
|
| 57 |
+
inputs["input_ids"],
|
| 58 |
+
max_length=max_length,
|
| 59 |
+
min_length=30,
|
| 60 |
+
num_beams=4,
|
| 61 |
+
length_penalty=2.0,
|
| 62 |
+
early_stopping=True
|
| 63 |
+
)
|
| 64 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 65 |
+
|
| 66 |
return answer if answer and not answer.isspace() else "I cannot find a specific answer to this question in the provided context."
|
| 67 |
|
| 68 |
# Streamlit App
|
|
|
|
| 72 |
if query:
|
| 73 |
with st.status("Searching for answers..."):
|
| 74 |
# Load dataset
|
| 75 |
+
df = load_dataset()
|
| 76 |
|
| 77 |
# Get relevant context
|
| 78 |
context = "\n".join([
|
| 79 |
+
f"{text[:1000]}" for text in df['text'].head(3)
|
|
|
|
| 80 |
])
|
| 81 |
|
| 82 |
# Generate answer
|
|
|
|
| 87 |
st.write(answer)
|
| 88 |
|
| 89 |
st.write("### Sources Used:")
|
| 90 |
+
for _, row in df.head(3).iterrows():
|
| 91 |
+
st.write(f"**Title:** {row['title']}")
|
| 92 |
+
st.write(f"**Summary:** {row['text'][:200]}...")
|
| 93 |
st.write("---")
|
| 94 |
else:
|
| 95 |
st.warning("I couldn't find a specific answer in the research papers. Try rephrasing your question.")
|