Spaces:
Sleeping
Sleeping
test: agno
Browse files- _old_app.py +203 -0
- app.py +134 -72
- requirements.txt +4 -5
_old_app.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
3 |
+
import os
|
4 |
+
from datasets import load_from_disk, Dataset
|
5 |
+
import torch
|
6 |
+
import logging
|
7 |
+
import pandas as pd
|
8 |
+
import arxiv
|
9 |
+
import requests
|
10 |
+
import xml.etree.ElementTree as ET
|
11 |
+
from agno.embedder.huggingface import HuggingfaceCustomEmbedder
|
12 |
+
from agno.vectordb.lancedb import LanceDb, SearchType
|
13 |
+
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
|
17 |
+
# Define data paths and constants
|
18 |
+
DATA_DIR = "/data" if os.path.exists("/data") else "."
|
19 |
+
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
|
20 |
+
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
|
21 |
+
MODEL_PATH = "google/flan-t5-base" # Lighter model
|
22 |
+
|
23 |
+
@st.cache_resource
|
24 |
+
def load_local_model():
|
25 |
+
"""Load the local Hugging Face model"""
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
27 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
28 |
+
MODEL_PATH,
|
29 |
+
torch_dtype=torch.float32, # Using float32 for CPU compatibility
|
30 |
+
device_map="auto"
|
31 |
+
)
|
32 |
+
return model, tokenizer
|
33 |
+
|
34 |
+
def fetch_arxiv_papers(query, max_results=5):
|
35 |
+
"""Fetch papers from arXiv"""
|
36 |
+
client = arxiv.Client()
|
37 |
+
|
38 |
+
# Clean and prepare the search query
|
39 |
+
search_query = f"ti:{query} OR abs:{query} AND cat:q-bio"
|
40 |
+
|
41 |
+
# Search arXiv
|
42 |
+
search = arxiv.Search(
|
43 |
+
query=search_query,
|
44 |
+
max_results=max_results,
|
45 |
+
sort_by=arxiv.SortCriterion.Relevance
|
46 |
+
)
|
47 |
+
|
48 |
+
papers = []
|
49 |
+
for result in client.results(search):
|
50 |
+
papers.append({
|
51 |
+
'title': result.title,
|
52 |
+
'abstract': result.summary,
|
53 |
+
'url': result.pdf_url,
|
54 |
+
'published': result.published
|
55 |
+
})
|
56 |
+
|
57 |
+
return papers
|
58 |
+
|
59 |
+
def fetch_pubmed_papers(query, max_results=5):
|
60 |
+
"""Fetch papers from PubMed"""
|
61 |
+
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
|
62 |
+
|
63 |
+
# Search for papers
|
64 |
+
search_url = f"{base_url}/esearch.fcgi"
|
65 |
+
search_params = {
|
66 |
+
'db': 'pubmed',
|
67 |
+
'term': query,
|
68 |
+
'retmax': max_results,
|
69 |
+
'sort': 'relevance',
|
70 |
+
'retmode': 'xml'
|
71 |
+
}
|
72 |
+
|
73 |
+
papers = []
|
74 |
+
try:
|
75 |
+
# Get paper IDs
|
76 |
+
response = requests.get(search_url, params=search_params)
|
77 |
+
root = ET.fromstring(response.content)
|
78 |
+
id_list = [id_elem.text for id_elem in root.findall('.//Id')]
|
79 |
+
|
80 |
+
if not id_list:
|
81 |
+
return papers
|
82 |
+
|
83 |
+
# Fetch paper details
|
84 |
+
fetch_url = f"{base_url}/efetch.fcgi"
|
85 |
+
fetch_params = {
|
86 |
+
'db': 'pubmed',
|
87 |
+
'id': ','.join(id_list),
|
88 |
+
'retmode': 'xml'
|
89 |
+
}
|
90 |
+
|
91 |
+
response = requests.get(fetch_url, params=fetch_params)
|
92 |
+
articles = ET.fromstring(response.content)
|
93 |
+
|
94 |
+
for article in articles.findall('.//PubmedArticle'):
|
95 |
+
title = article.find('.//ArticleTitle')
|
96 |
+
abstract = article.find('.//Abstract/AbstractText')
|
97 |
+
|
98 |
+
papers.append({
|
99 |
+
'title': title.text if title is not None else 'No title available',
|
100 |
+
'abstract': abstract.text if abstract is not None else 'No abstract available',
|
101 |
+
'url': f"https://pubmed.ncbi.nlm.nih.gov/{article.find('.//PMID').text}/",
|
102 |
+
'published': article.find('.//PubDate/Year').text if article.find('.//PubDate/Year') is not None else 'Unknown'
|
103 |
+
})
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"Error fetching PubMed papers: {str(e)}")
|
107 |
+
|
108 |
+
return papers
|
109 |
+
|
110 |
+
def search_research_papers(query):
|
111 |
+
"""Search both arXiv and PubMed for papers"""
|
112 |
+
arxiv_papers = fetch_arxiv_papers(query)
|
113 |
+
pubmed_papers = fetch_pubmed_papers(query)
|
114 |
+
|
115 |
+
# Combine and format papers
|
116 |
+
all_papers = []
|
117 |
+
for paper in arxiv_papers + pubmed_papers:
|
118 |
+
all_papers.append({
|
119 |
+
'title': paper['title'],
|
120 |
+
'text': f"Title: {paper['title']}\nAbstract: {paper['abstract']}",
|
121 |
+
'url': paper['url'],
|
122 |
+
'published': paper['published']
|
123 |
+
})
|
124 |
+
|
125 |
+
return pd.DataFrame(all_papers)
|
126 |
+
|
127 |
+
def generate_answer(question, context, max_length=512):
|
128 |
+
"""Generate a comprehensive answer using the local model"""
|
129 |
+
model, tokenizer = load_local_model()
|
130 |
+
|
131 |
+
# Format the context as a structured query
|
132 |
+
prompt = f"""Based on the following research papers about autism, provide a detailed answer:
|
133 |
+
|
134 |
+
Question: {question}
|
135 |
+
|
136 |
+
Research Context:
|
137 |
+
{context}
|
138 |
+
|
139 |
+
Please analyze:
|
140 |
+
1. Main findings
|
141 |
+
2. Research methods
|
142 |
+
3. Clinical implications
|
143 |
+
4. Limitations
|
144 |
+
|
145 |
+
Answer:"""
|
146 |
+
|
147 |
+
# Generate response
|
148 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True)
|
149 |
+
|
150 |
+
with torch.inference_mode():
|
151 |
+
outputs = model.generate(
|
152 |
+
**inputs,
|
153 |
+
max_length=max_length,
|
154 |
+
num_beams=4,
|
155 |
+
temperature=0.7,
|
156 |
+
top_p=0.9,
|
157 |
+
repetition_penalty=1.2,
|
158 |
+
early_stopping=True
|
159 |
+
)
|
160 |
+
|
161 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
162 |
+
|
163 |
+
# Format the response
|
164 |
+
formatted_response = response.replace(". ", ".\n").replace("• ", "\n• ")
|
165 |
+
|
166 |
+
return formatted_response
|
167 |
+
|
168 |
+
# Streamlit App
|
169 |
+
st.title("🧩 AMA Autism")
|
170 |
+
st.write("This app searches through scientific papers to answer your questions about autism. For best results, be specific in your questions.")
|
171 |
+
query = st.text_input("Please ask me anything about autism ✨")
|
172 |
+
|
173 |
+
if query:
|
174 |
+
with st.status("Searching for answers...") as status:
|
175 |
+
# Search for papers
|
176 |
+
df = search_research_papers(query)
|
177 |
+
st.write("Searching for data in PubMed and arXiv...")
|
178 |
+
st.write("Data found!")
|
179 |
+
|
180 |
+
# Get relevant context
|
181 |
+
context = "\n".join([
|
182 |
+
f"{text[:1000]}" for text in df['text'].head(3)
|
183 |
+
])
|
184 |
+
|
185 |
+
# Generate answer
|
186 |
+
answer = generate_answer(query, context)
|
187 |
+
st.write("Generating answer...")
|
188 |
+
status.update(
|
189 |
+
label="Search complete!", state="complete", expanded=False
|
190 |
+
)
|
191 |
+
if answer and not answer.isspace():
|
192 |
+
st.success("Answer found!")
|
193 |
+
st.write(answer)
|
194 |
+
|
195 |
+
st.write("### Sources used:")
|
196 |
+
for _, row in df.head(3).iterrows():
|
197 |
+
st.markdown(f"**[{row['title']}]({row['url']})** ({row['published']})")
|
198 |
+
st.write(f"**Summary:** {row['text'][:200]}...")
|
199 |
+
st.write("---")
|
200 |
+
else:
|
201 |
+
st.warning("I couldn't find a specific answer in the research papers. Try rephrasing your question.")
|
202 |
+
if df.empty:
|
203 |
+
st.warning("I couldn't find any relevant research papers about this topic. Please try rephrasing your question or ask something else about autism.")
|
app.py
CHANGED
@@ -1,109 +1,169 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
import os
|
4 |
from datasets import load_from_disk, Dataset
|
5 |
import torch
|
6 |
import logging
|
7 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Configure logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
-
# Define data paths
|
13 |
DATA_DIR = "/data" if os.path.exists("/data") else "."
|
14 |
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
|
15 |
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
|
|
|
16 |
|
17 |
-
# Cache models and dataset
|
18 |
@st.cache_resource
|
19 |
-
def
|
20 |
-
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
22 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
23 |
-
|
24 |
-
torch_dtype=torch.
|
25 |
-
|
26 |
-
device_map='auto',
|
27 |
-
max_memory={'cpu': '1GB'}
|
28 |
)
|
29 |
-
return
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
with st.spinner("Searching research papers from arXiv and PubMed..."):
|
35 |
-
import faiss_index.index as idx
|
36 |
-
# Ensure both autism and the query terms are included
|
37 |
-
if 'autism' not in query.lower():
|
38 |
-
search_query = f"autism {query}"
|
39 |
-
else:
|
40 |
-
search_query = query
|
41 |
-
|
42 |
-
papers = idx.fetch_papers(search_query, max_results=25) # This now fetches from both sources
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
dataset = load_from_disk(DATASET_PATH)
|
52 |
-
df = pd.DataFrame({
|
53 |
-
'title': dataset['title'],
|
54 |
-
'text': dataset['text'],
|
55 |
-
'url': [p['url'] for p in papers],
|
56 |
-
'published': [p['published'] for p in papers]
|
57 |
-
})
|
58 |
-
return df
|
59 |
|
60 |
-
def
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
4. Any limitations or areas needing further research
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
#
|
80 |
-
inputs = tokenizer(prompt, return_tensors="pt",
|
81 |
|
82 |
with torch.inference_mode():
|
83 |
outputs = model.generate(
|
84 |
**inputs,
|
85 |
max_length=max_length,
|
86 |
-
num_beams=4,
|
87 |
-
temperature=0.
|
88 |
top_p=0.9,
|
89 |
-
repetition_penalty=1.
|
90 |
-
length_penalty=1.2,
|
91 |
early_stopping=True
|
92 |
)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
# Clear GPU memory if possible
|
97 |
-
if torch.cuda.is_available():
|
98 |
-
torch.cuda.empty_cache()
|
99 |
|
100 |
-
#
|
101 |
-
|
102 |
-
return "I cannot find specific information about this topic in the autism research papers."
|
103 |
|
104 |
-
|
105 |
-
formatted_answer = answer.replace(". ", ".\n").replace("• ", "\n• ")
|
106 |
-
return formatted_answer
|
107 |
|
108 |
# Streamlit App
|
109 |
st.title("🧩 AMA Autism")
|
@@ -112,14 +172,16 @@ query = st.text_input("Please ask me anything about autism ✨")
|
|
112 |
|
113 |
if query:
|
114 |
with st.status("Searching for answers...") as status:
|
115 |
-
#
|
116 |
-
df =
|
117 |
st.write("Searching for data in PubMed and arXiv...")
|
|
|
|
|
118 |
# Get relevant context
|
119 |
context = "\n".join([
|
120 |
f"{text[:1000]}" for text in df['text'].head(3)
|
121 |
])
|
122 |
-
|
123 |
# Generate answer
|
124 |
answer = generate_answer(query, context)
|
125 |
st.write("Generating answer...")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
3 |
import os
|
4 |
from datasets import load_from_disk, Dataset
|
5 |
import torch
|
6 |
import logging
|
7 |
import pandas as pd
|
8 |
+
import arxiv
|
9 |
+
import requests
|
10 |
+
import xml.etree.ElementTree as ET
|
11 |
+
from agno.embedder.huggingface import HuggingfaceCustomEmbedder
|
12 |
+
from agno.vectordb.lancedb import LanceDb, SearchType
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
|
17 |
+
# Define data paths and constants
|
18 |
DATA_DIR = "/data" if os.path.exists("/data") else "."
|
19 |
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
|
20 |
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
|
21 |
+
MODEL_PATH = "google/flan-t5-base" # Lighter model
|
22 |
|
|
|
23 |
@st.cache_resource
|
24 |
+
def load_local_model():
|
25 |
+
"""Load the local Hugging Face model"""
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
28 |
+
MODEL_PATH,
|
29 |
+
torch_dtype=torch.float32, # Using float32 for CPU compatibility
|
30 |
+
device_map="auto"
|
|
|
|
|
31 |
)
|
32 |
+
return model, tokenizer
|
33 |
|
34 |
+
def fetch_arxiv_papers(query, max_results=5):
|
35 |
+
"""Fetch papers from arXiv"""
|
36 |
+
client = arxiv.Client()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Clean and prepare the search query
|
39 |
+
search_query = f"ti:{query} OR abs:{query} AND cat:q-bio"
|
40 |
+
|
41 |
+
# Search arXiv
|
42 |
+
search = arxiv.Search(
|
43 |
+
query=search_query,
|
44 |
+
max_results=max_results,
|
45 |
+
sort_by=arxiv.SortCriterion.Relevance
|
46 |
+
)
|
47 |
+
|
48 |
+
papers = []
|
49 |
+
for result in client.results(search):
|
50 |
+
papers.append({
|
51 |
+
'title': result.title,
|
52 |
+
'abstract': result.summary,
|
53 |
+
'url': result.pdf_url,
|
54 |
+
'published': result.published
|
55 |
+
})
|
56 |
|
57 |
+
return papers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def fetch_pubmed_papers(query, max_results=5):
|
60 |
+
"""Fetch papers from PubMed"""
|
61 |
+
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
|
62 |
+
|
63 |
+
# Search for papers
|
64 |
+
search_url = f"{base_url}/esearch.fcgi"
|
65 |
+
search_params = {
|
66 |
+
'db': 'pubmed',
|
67 |
+
'term': query,
|
68 |
+
'retmax': max_results,
|
69 |
+
'sort': 'relevance',
|
70 |
+
'retmode': 'xml'
|
71 |
+
}
|
72 |
+
|
73 |
+
papers = []
|
74 |
+
try:
|
75 |
+
# Get paper IDs
|
76 |
+
response = requests.get(search_url, params=search_params)
|
77 |
+
root = ET.fromstring(response.content)
|
78 |
+
id_list = [id_elem.text for id_elem in root.findall('.//Id')]
|
79 |
+
|
80 |
+
if not id_list:
|
81 |
+
return papers
|
82 |
+
|
83 |
+
# Fetch paper details
|
84 |
+
fetch_url = f"{base_url}/efetch.fcgi"
|
85 |
+
fetch_params = {
|
86 |
+
'db': 'pubmed',
|
87 |
+
'id': ','.join(id_list),
|
88 |
+
'retmode': 'xml'
|
89 |
+
}
|
90 |
+
|
91 |
+
response = requests.get(fetch_url, params=fetch_params)
|
92 |
+
articles = ET.fromstring(response.content)
|
93 |
+
|
94 |
+
for article in articles.findall('.//PubmedArticle'):
|
95 |
+
title = article.find('.//ArticleTitle')
|
96 |
+
abstract = article.find('.//Abstract/AbstractText')
|
97 |
+
|
98 |
+
papers.append({
|
99 |
+
'title': title.text if title is not None else 'No title available',
|
100 |
+
'abstract': abstract.text if abstract is not None else 'No abstract available',
|
101 |
+
'url': f"https://pubmed.ncbi.nlm.nih.gov/{article.find('.//PMID').text}/",
|
102 |
+
'published': article.find('.//PubDate/Year').text if article.find('.//PubDate/Year') is not None else 'Unknown'
|
103 |
+
})
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"Error fetching PubMed papers: {str(e)}")
|
107 |
|
108 |
+
return papers
|
109 |
+
|
110 |
+
def search_research_papers(query):
|
111 |
+
"""Search both arXiv and PubMed for papers"""
|
112 |
+
arxiv_papers = fetch_arxiv_papers(query)
|
113 |
+
pubmed_papers = fetch_pubmed_papers(query)
|
|
|
114 |
|
115 |
+
# Combine and format papers
|
116 |
+
all_papers = []
|
117 |
+
for paper in arxiv_papers + pubmed_papers:
|
118 |
+
all_papers.append({
|
119 |
+
'title': paper['title'],
|
120 |
+
'text': f"Title: {paper['title']}\nAbstract: {paper['abstract']}",
|
121 |
+
'url': paper['url'],
|
122 |
+
'published': paper['published']
|
123 |
+
})
|
124 |
|
125 |
+
return pd.DataFrame(all_papers)
|
126 |
+
|
127 |
+
def generate_answer(question, context, max_length=512):
|
128 |
+
"""Generate a comprehensive answer using the local model"""
|
129 |
+
model, tokenizer = load_local_model()
|
130 |
|
131 |
+
# Format the context as a structured query
|
132 |
+
prompt = f"""Based on the following research papers about autism, provide a detailed answer:
|
133 |
+
|
134 |
+
Question: {question}
|
135 |
+
|
136 |
+
Research Context:
|
137 |
+
{context}
|
138 |
+
|
139 |
+
Please analyze:
|
140 |
+
1. Main findings
|
141 |
+
2. Research methods
|
142 |
+
3. Clinical implications
|
143 |
+
4. Limitations
|
144 |
+
|
145 |
+
Answer:"""
|
146 |
|
147 |
+
# Generate response
|
148 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True)
|
149 |
|
150 |
with torch.inference_mode():
|
151 |
outputs = model.generate(
|
152 |
**inputs,
|
153 |
max_length=max_length,
|
154 |
+
num_beams=4,
|
155 |
+
temperature=0.7,
|
156 |
top_p=0.9,
|
157 |
+
repetition_penalty=1.2,
|
|
|
158 |
early_stopping=True
|
159 |
)
|
160 |
|
161 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
# Format the response
|
164 |
+
formatted_response = response.replace(". ", ".\n").replace("• ", "\n• ")
|
|
|
165 |
|
166 |
+
return formatted_response
|
|
|
|
|
167 |
|
168 |
# Streamlit App
|
169 |
st.title("🧩 AMA Autism")
|
|
|
172 |
|
173 |
if query:
|
174 |
with st.status("Searching for answers...") as status:
|
175 |
+
# Search for papers
|
176 |
+
df = search_research_papers(query)
|
177 |
st.write("Searching for data in PubMed and arXiv...")
|
178 |
+
st.write("Data found!")
|
179 |
+
|
180 |
# Get relevant context
|
181 |
context = "\n".join([
|
182 |
f"{text[:1000]}" for text in df['text'].head(3)
|
183 |
])
|
184 |
+
|
185 |
# Generate answer
|
186 |
answer = generate_answer(query, context)
|
187 |
st.write("Generating answer...")
|
requirements.txt
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
streamlit>=1.32.0
|
2 |
transformers>=4.37.0
|
3 |
datasets>=2.17.0
|
4 |
-
sentence-transformers>=2.3.1
|
5 |
-
faiss-cpu>=1.7.4
|
6 |
-
arxiv>=2.1.0
|
7 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
8 |
torch>=2.2.0
|
9 |
accelerate>=0.26.0
|
10 |
-
bitsandbytes>=0.41.1
|
11 |
numpy>=1.24.0
|
12 |
pandas>=2.2.0
|
13 |
-
requests>=2.31.0
|
|
|
|
|
|
|
|
1 |
streamlit>=1.32.0
|
2 |
transformers>=4.37.0
|
3 |
datasets>=2.17.0
|
|
|
|
|
|
|
4 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
5 |
torch>=2.2.0
|
6 |
accelerate>=0.26.0
|
|
|
7 |
numpy>=1.24.0
|
8 |
pandas>=2.2.0
|
9 |
+
requests>=2.31.0
|
10 |
+
arxiv>=2.1.0
|
11 |
+
lancedb>=0.3.3
|
12 |
+
tantivy>=0.19.2
|