Spaces:
Sleeping
Sleeping
fix: try to lightweight it
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import
|
| 3 |
-
import faiss
|
| 4 |
import os
|
| 5 |
from datasets import load_from_disk
|
| 6 |
import torch
|
|
@@ -13,51 +12,37 @@ logging.basicConfig(level=logging.INFO)
|
|
| 13 |
DATA_DIR = "/data" if os.path.exists("/data") else "."
|
| 14 |
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
|
| 15 |
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
|
| 16 |
-
INDEX_PATH = os.path.join(DATASET_DIR, "embeddings.faiss")
|
| 17 |
|
| 18 |
# Cache models and dataset
|
| 19 |
-
@st.cache_resource
|
| 20 |
def load_models():
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
passages_path=DATASET_PATH,
|
| 26 |
-
index_path=INDEX_PATH
|
| 27 |
-
)
|
| 28 |
-
model = RagSequenceForGeneration.from_pretrained(
|
| 29 |
-
"facebook/rag-sequence-nq",
|
| 30 |
-
retriever=retriever
|
| 31 |
-
)
|
| 32 |
-
# Move to CPU (since we're in a CPU environment)
|
| 33 |
-
model = model.cpu()
|
| 34 |
-
return tokenizer, retriever, model
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
with torch.no_grad():
|
| 51 |
-
outputs = model
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
)
|
| 59 |
-
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 60 |
-
return answer
|
| 61 |
|
| 62 |
# Streamlit App
|
| 63 |
st.title("🧩 AMA Autism")
|
|
@@ -65,10 +50,26 @@ query = st.text_input("Please ask me anything about autism ✨")
|
|
| 65 |
|
| 66 |
if query:
|
| 67 |
with st.status("Searching for answers..."):
|
|
|
|
| 68 |
dataset = load_dataset()
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
st.success("Answer found!")
|
| 72 |
st.write(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
else:
|
| 74 |
-
st.
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
| 3 |
import os
|
| 4 |
from datasets import load_from_disk
|
| 5 |
import torch
|
|
|
|
| 12 |
DATA_DIR = "/data" if os.path.exists("/data") else "."
|
| 13 |
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
|
| 14 |
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
|
|
|
|
| 15 |
|
| 16 |
# Cache models and dataset
|
| 17 |
+
@st.cache_resource
|
| 18 |
def load_models():
|
| 19 |
+
model_name = "t5-base"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 21 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 22 |
+
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def generate_answer(question, context, max_length=200):
|
| 25 |
+
tokenizer, model = load_models()
|
| 26 |
+
|
| 27 |
+
# Encode the question and context
|
| 28 |
+
inputs = tokenizer(
|
| 29 |
+
f"question: {question} context: {context}",
|
| 30 |
+
add_special_tokens=True,
|
| 31 |
+
return_tensors="pt",
|
| 32 |
+
max_length=512,
|
| 33 |
+
truncation=True,
|
| 34 |
+
padding=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Get model predictions
|
| 38 |
with torch.no_grad():
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
+
answer_ids = torch.argmax(outputs.logits, dim=-1)
|
| 41 |
+
|
| 42 |
+
# Convert token positions to text
|
| 43 |
+
answer = tokenizer.decode(answer_ids[0], skip_special_tokens=True)
|
| 44 |
+
|
| 45 |
+
return answer if answer and not answer.isspace() else "I cannot find a specific answer to this question in the provided context."
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# Streamlit App
|
| 48 |
st.title("🧩 AMA Autism")
|
|
|
|
| 50 |
|
| 51 |
if query:
|
| 52 |
with st.status("Searching for answers..."):
|
| 53 |
+
# Load dataset
|
| 54 |
dataset = load_dataset()
|
| 55 |
+
|
| 56 |
+
# Get relevant context
|
| 57 |
+
context = "\n".join([
|
| 58 |
+
f"{paper['text'][:1000]}" # Use more context for better answers
|
| 59 |
+
for paper in dataset[:3]
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
# Generate answer
|
| 63 |
+
answer = generate_answer(query, context)
|
| 64 |
+
|
| 65 |
+
if answer and not answer.isspace():
|
| 66 |
st.success("Answer found!")
|
| 67 |
st.write(answer)
|
| 68 |
+
|
| 69 |
+
st.write("### Sources Used:")
|
| 70 |
+
for i in range(min(3, len(dataset))):
|
| 71 |
+
st.write(f"**Title:** {dataset[i]['title']}")
|
| 72 |
+
st.write(f"**Summary:** {dataset[i]['text'][:200]}...")
|
| 73 |
+
st.write("---")
|
| 74 |
else:
|
| 75 |
+
st.warning("I couldn't find a specific answer in the research papers. Try rephrasing your question.")
|