File size: 6,734 Bytes
93b0124
d5b8fa3
cfec7bd
 
d5b8fa3
cfec7bd
 
f45b71b
cfec7bd
 
f073b54
cfec7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f073b54
cfec7bd
f073b54
 
 
 
cfec7bd
f073b54
 
 
cfec7bd
f073b54
 
 
 
 
cfec7bd
 
 
 
 
 
f073b54
 
 
cfec7bd
f073b54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfec7bd
f073b54
 
cfec7bd
 
 
 
 
 
 
 
 
 
 
f073b54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfec7bd
 
 
f073b54
f8b5cf4
f073b54
93b0124
f073b54
 
 
d5b8fa3
 
f073b54
cfec7bd
f073b54
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import shutil
import faiss
import numpy as np
import gradio as gr
from sentence_transformers import SentenceTransformer
from huggingface_hub import HfApi, hf_hub_download, login

# πŸ”Ή Hugging Face Repository Details
HF_REPO_ID = "tstone87/repo"  # Your dataset repo
HF_TOKEN = os.getenv("HF_TOKEN")  # Secure API token

if not HF_TOKEN:
    raise ValueError("❌ ERROR: Hugging Face token not found. Add it as a secret in the Hugging Face Space settings.")

# πŸ”Ή Authenticate with Hugging Face
login(token=HF_TOKEN)

# πŸ”Ή File Paths
EMBEDDINGS_FILE = "policy_embeddings.npy"
INDEX_FILE = "faiss_index.bin"
TEXT_FILE = "combined_text_documents.txt"

# πŸ”Ή Load policy text from file
if os.path.exists(TEXT_FILE):
    with open(TEXT_FILE, "r", encoding="utf-8") as f:
        POLICY_TEXT = f.read()
    print("βœ… Loaded policy text from combined_text_documents.txt")
else:
    print("❌ ERROR: combined_text_documents.txt not found! Ensure it's uploaded.")
    POLICY_TEXT = ""

# πŸ”Ή Sentence Embedding Model (Optimized for Speed)
model = SentenceTransformer("all-MiniLM-L6-v2")

# πŸ”Ή Split policy text into chunks for FAISS indexing
chunk_size = 500
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []

# πŸ”Ή Function to Download FAISS Files from Hugging Face Hub if Available
def download_faiss_from_hf():
    try:
        if not os.path.exists(EMBEDDINGS_FILE):
            print("πŸ“₯ Downloading FAISS embeddings from Hugging Face...")
            hf_hub_download(repo_id=HF_REPO_ID, filename=EMBEDDINGS_FILE, local_dir=".", token=HF_TOKEN)

        if not os.path.exists(INDEX_FILE):
            print("πŸ“₯ Downloading FAISS index from Hugging Face...")
            hf_hub_download(repo_id=HF_REPO_ID, filename=INDEX_FILE, local_dir=".", token=HF_TOKEN)

        print("βœ… FAISS files downloaded from Hugging Face.")
        return True
    except Exception as e:
        print(f"⚠️ FAISS files not found in Hugging Face repo. Recomputing... ({e})")
        return False

# πŸ”Ή Check if FAISS Files Exist, Otherwise Download or Generate
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
    print("βœ… FAISS files found locally. Loading from disk...")
    embeddings = np.load(EMBEDDINGS_FILE)
    index = faiss.read_index(INDEX_FILE)
elif download_faiss_from_hf():
    embeddings = np.load(EMBEDDINGS_FILE)
    index = faiss.read_index(INDEX_FILE)
else:
    print("πŸš€ No FAISS files found. Creating new index...")
    if chunks:
        embeddings = np.array([model.encode(chunk) for chunk in chunks])

        # Save embeddings for future use
        np.save(EMBEDDINGS_FILE, embeddings)

        # Use FAISS optimized index for faster lookup
        d = embeddings.shape[1]
        nlist = 10  # Number of clusters
        index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
        index.train(embeddings)
        index.add(embeddings)
        index.nprobe = 2  # Speed optimization

        # Save FAISS index
        faiss.write_index(index, INDEX_FILE)
        print("βœ… FAISS index created and saved.")
    else:
        print("❌ ERROR: No text to index. Check combined_text_documents.txt.")
        index = None

# πŸ”Ή Function to Search FAISS
def search_policy(query, top_k=3):
    if index is None:
        return "Error: FAISS index is not available."

    query_embedding = model.encode(query).reshape(1, -1)
    distances, indices = index.search(query_embedding, top_k)

    return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])

# πŸ”Ή Hugging Face LLM Client
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# πŸ”Ή Function to Handle Chat Responses
def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    # πŸ”Ή Retrieve relevant policy info from FAISS
    policy_context = search_policy(message)

    if policy_context:
        # πŸ”Ή Display retrieved context in chat
        messages.append({"role": "assistant", "content": f"πŸ“„ **Relevant Policy Context:**\n\n{policy_context}"})

        # πŸ”Ή Force the LLM to use the retrieved policy text
        user_query_with_context = f"""
        The following is the most relevant policy information retrieved from the official Colorado public assistance policies:

        {policy_context}

        Based on this information, answer the following question:
        {message}
        """
        messages.append({"role": "user", "content": user_query_with_context})
    else:
        # If no relevant policy info is found, use the original message
        messages.append({"role": "user", "content": message})

    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# πŸ”Ή Gradio Chat Interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs.",
            label="System message"
        ),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
)

# πŸ”Ή Function to Provide FAISS Files for Download
def download_faiss_files():
    if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
        shutil.copy(EMBEDDINGS_FILE, "/mnt/data/policy_embeddings.npy")
        shutil.copy(INDEX_FILE, "/mnt/data/faiss_index.bin")
        return "βœ… FAISS files ready for download! Check the 'Files' tab in your Hugging Face Space."
    else:
        return "❌ FAISS files not found. Run the chatbot first to generate them."

# Gradio button for downloading FAISS files
with gr.Blocks() as file_download:
    gr.Markdown("### πŸ”½ Download FAISS Files to Your Computer")
    download_button = gr.Button("Prepare FAISS Files for Download")
    output_text = gr.Textbox()
    download_button.click(fn=download_faiss_files, outputs=output_text)

if __name__ == "__main__":
    demo.launch()
    file_download.launch()