Spaces:
Running
Running
File size: 6,734 Bytes
93b0124 d5b8fa3 cfec7bd d5b8fa3 cfec7bd f45b71b cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 cfec7bd f073b54 f8b5cf4 f073b54 93b0124 f073b54 d5b8fa3 f073b54 cfec7bd f073b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import shutil
import faiss
import numpy as np
import gradio as gr
from sentence_transformers import SentenceTransformer
from huggingface_hub import HfApi, hf_hub_download, login
# πΉ Hugging Face Repository Details
HF_REPO_ID = "tstone87/repo" # Your dataset repo
HF_TOKEN = os.getenv("HF_TOKEN") # Secure API token
if not HF_TOKEN:
raise ValueError("β ERROR: Hugging Face token not found. Add it as a secret in the Hugging Face Space settings.")
# πΉ Authenticate with Hugging Face
login(token=HF_TOKEN)
# πΉ File Paths
EMBEDDINGS_FILE = "policy_embeddings.npy"
INDEX_FILE = "faiss_index.bin"
TEXT_FILE = "combined_text_documents.txt"
# πΉ Load policy text from file
if os.path.exists(TEXT_FILE):
with open(TEXT_FILE, "r", encoding="utf-8") as f:
POLICY_TEXT = f.read()
print("β
Loaded policy text from combined_text_documents.txt")
else:
print("β ERROR: combined_text_documents.txt not found! Ensure it's uploaded.")
POLICY_TEXT = ""
# πΉ Sentence Embedding Model (Optimized for Speed)
model = SentenceTransformer("all-MiniLM-L6-v2")
# πΉ Split policy text into chunks for FAISS indexing
chunk_size = 500
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []
# πΉ Function to Download FAISS Files from Hugging Face Hub if Available
def download_faiss_from_hf():
try:
if not os.path.exists(EMBEDDINGS_FILE):
print("π₯ Downloading FAISS embeddings from Hugging Face...")
hf_hub_download(repo_id=HF_REPO_ID, filename=EMBEDDINGS_FILE, local_dir=".", token=HF_TOKEN)
if not os.path.exists(INDEX_FILE):
print("π₯ Downloading FAISS index from Hugging Face...")
hf_hub_download(repo_id=HF_REPO_ID, filename=INDEX_FILE, local_dir=".", token=HF_TOKEN)
print("β
FAISS files downloaded from Hugging Face.")
return True
except Exception as e:
print(f"β οΈ FAISS files not found in Hugging Face repo. Recomputing... ({e})")
return False
# πΉ Check if FAISS Files Exist, Otherwise Download or Generate
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
print("β
FAISS files found locally. Loading from disk...")
embeddings = np.load(EMBEDDINGS_FILE)
index = faiss.read_index(INDEX_FILE)
elif download_faiss_from_hf():
embeddings = np.load(EMBEDDINGS_FILE)
index = faiss.read_index(INDEX_FILE)
else:
print("π No FAISS files found. Creating new index...")
if chunks:
embeddings = np.array([model.encode(chunk) for chunk in chunks])
# Save embeddings for future use
np.save(EMBEDDINGS_FILE, embeddings)
# Use FAISS optimized index for faster lookup
d = embeddings.shape[1]
nlist = 10 # Number of clusters
index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
index.train(embeddings)
index.add(embeddings)
index.nprobe = 2 # Speed optimization
# Save FAISS index
faiss.write_index(index, INDEX_FILE)
print("β
FAISS index created and saved.")
else:
print("β ERROR: No text to index. Check combined_text_documents.txt.")
index = None
# πΉ Function to Search FAISS
def search_policy(query, top_k=3):
if index is None:
return "Error: FAISS index is not available."
query_embedding = model.encode(query).reshape(1, -1)
distances, indices = index.search(query_embedding, top_k)
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
# πΉ Hugging Face LLM Client
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# πΉ Function to Handle Chat Responses
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# πΉ Retrieve relevant policy info from FAISS
policy_context = search_policy(message)
if policy_context:
# πΉ Display retrieved context in chat
messages.append({"role": "assistant", "content": f"π **Relevant Policy Context:**\n\n{policy_context}"})
# πΉ Force the LLM to use the retrieved policy text
user_query_with_context = f"""
The following is the most relevant policy information retrieved from the official Colorado public assistance policies:
{policy_context}
Based on this information, answer the following question:
{message}
"""
messages.append({"role": "user", "content": user_query_with_context})
else:
# If no relevant policy info is found, use the original message
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# πΉ Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# πΉ Function to Provide FAISS Files for Download
def download_faiss_files():
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
shutil.copy(EMBEDDINGS_FILE, "/mnt/data/policy_embeddings.npy")
shutil.copy(INDEX_FILE, "/mnt/data/faiss_index.bin")
return "β
FAISS files ready for download! Check the 'Files' tab in your Hugging Face Space."
else:
return "β FAISS files not found. Run the chatbot first to generate them."
# Gradio button for downloading FAISS files
with gr.Blocks() as file_download:
gr.Markdown("### π½ Download FAISS Files to Your Computer")
download_button = gr.Button("Prepare FAISS Files for Download")
output_text = gr.Textbox()
download_button.click(fn=download_faiss_files, outputs=output_text)
if __name__ == "__main__":
demo.launch()
file_download.launch()
|