Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,25 @@
|
|
1 |
-
import
|
2 |
import faiss
|
3 |
import numpy as np
|
4 |
-
import os
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
-
from huggingface_hub import
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
EMBEDDINGS_FILE = "policy_embeddings.npy"
|
14 |
INDEX_FILE = "faiss_index.bin"
|
|
|
15 |
|
16 |
-
# Load policy text from file
|
17 |
if os.path.exists(TEXT_FILE):
|
18 |
with open(TEXT_FILE, "r", encoding="utf-8") as f:
|
19 |
POLICY_TEXT = f.read()
|
@@ -22,35 +28,88 @@ else:
|
|
22 |
print("β ERROR: combined_text_documents.txt not found! Ensure it's uploaded.")
|
23 |
POLICY_TEXT = ""
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
26 |
chunk_size = 500
|
27 |
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []
|
28 |
|
29 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
31 |
-
print("β
|
32 |
embeddings = np.load(EMBEDDINGS_FILE)
|
33 |
index = faiss.read_index(INDEX_FILE)
|
34 |
else:
|
35 |
-
print("π
|
36 |
-
|
37 |
-
embeddings = np.array([model.encode(chunk) for chunk in chunks])
|
38 |
-
np.save(EMBEDDINGS_FILE, embeddings) # Save for future runs
|
39 |
-
|
40 |
-
# Use FAISS optimized index for faster lookup
|
41 |
-
d = embeddings.shape[1]
|
42 |
-
nlist = 10 # Number of clusters
|
43 |
-
index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
|
44 |
-
index.train(embeddings)
|
45 |
-
index.add(embeddings)
|
46 |
-
index.nprobe = 2 # Speed optimization
|
47 |
-
faiss.write_index(index, INDEX_FILE) # Save FAISS index
|
48 |
-
print("β
FAISS index created and saved.")
|
49 |
-
else:
|
50 |
-
print("β ERROR: No text to index. Check combined_text_documents.txt.")
|
51 |
-
index = None
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def search_policy(query, top_k=3):
|
55 |
if index is None:
|
56 |
return "Error: FAISS index is not available."
|
@@ -61,16 +120,11 @@ def search_policy(query, top_k=3):
|
|
61 |
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
|
62 |
|
63 |
# πΉ Hugging Face LLM Client
|
|
|
64 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
history: list[tuple[str, str]],
|
69 |
-
system_message,
|
70 |
-
max_tokens,
|
71 |
-
temperature,
|
72 |
-
top_p,
|
73 |
-
):
|
74 |
messages = [{"role": "system", "content": system_message}]
|
75 |
|
76 |
for val in history:
|
@@ -113,11 +167,13 @@ def respond(
|
|
113 |
yield response
|
114 |
|
115 |
# πΉ Gradio Chat Interface
|
|
|
|
|
116 |
demo = gr.ChatInterface(
|
117 |
respond,
|
118 |
additional_inputs=[
|
119 |
gr.Textbox(
|
120 |
-
value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs.
|
121 |
label="System message"
|
122 |
),
|
123 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
|
1 |
+
import os
|
2 |
import faiss
|
3 |
import numpy as np
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
+
from huggingface_hub import HfApi, hf_hub_download, login, whoami
|
6 |
|
7 |
+
# πΉ Hugging Face Repository Details
|
8 |
+
HF_REPO_ID = "tstone87/repo" # Your repo
|
9 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Retrieve token securely from environment variable
|
10 |
|
11 |
+
if not HF_TOKEN:
|
12 |
+
raise ValueError("β ERROR: Hugging Face token not found. Add it as a secret in the Hugging Face Space settings.")
|
13 |
+
|
14 |
+
# πΉ Authenticate with Hugging Face
|
15 |
+
login(token=HF_TOKEN)
|
16 |
+
|
17 |
+
# πΉ File Paths
|
18 |
EMBEDDINGS_FILE = "policy_embeddings.npy"
|
19 |
INDEX_FILE = "faiss_index.bin"
|
20 |
+
TEXT_FILE = "combined_text_documents.txt"
|
21 |
|
22 |
+
# πΉ Load policy text from file
|
23 |
if os.path.exists(TEXT_FILE):
|
24 |
with open(TEXT_FILE, "r", encoding="utf-8") as f:
|
25 |
POLICY_TEXT = f.read()
|
|
|
28 |
print("β ERROR: combined_text_documents.txt not found! Ensure it's uploaded.")
|
29 |
POLICY_TEXT = ""
|
30 |
|
31 |
+
# πΉ Sentence Embedding Model (Optimized for Speed)
|
32 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
33 |
+
|
34 |
+
# πΉ Split policy text into chunks for FAISS indexing
|
35 |
chunk_size = 500
|
36 |
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []
|
37 |
|
38 |
+
# πΉ Function to Upload FAISS Files to Hugging Face Hub
|
39 |
+
def upload_faiss_to_hf():
|
40 |
+
api = HfApi()
|
41 |
+
|
42 |
+
if os.path.exists(EMBEDDINGS_FILE):
|
43 |
+
print("π€ Uploading FAISS embeddings to Hugging Face...")
|
44 |
+
api.upload_file(
|
45 |
+
path_or_fileobj=EMBEDDINGS_FILE,
|
46 |
+
path_in_repo=EMBEDDINGS_FILE,
|
47 |
+
repo_id=HF_REPO_ID,
|
48 |
+
repo_type="dataset",
|
49 |
+
token=HF_TOKEN,
|
50 |
+
)
|
51 |
+
|
52 |
+
if os.path.exists(INDEX_FILE):
|
53 |
+
print("π€ Uploading FAISS index to Hugging Face...")
|
54 |
+
api.upload_file(
|
55 |
+
path_or_fileobj=INDEX_FILE,
|
56 |
+
path_in_repo=INDEX_FILE,
|
57 |
+
repo_id=HF_REPO_ID,
|
58 |
+
repo_type="dataset",
|
59 |
+
token=HF_TOKEN,
|
60 |
+
)
|
61 |
+
|
62 |
+
print("β
FAISS files successfully uploaded to Hugging Face.")
|
63 |
+
|
64 |
+
# πΉ Function to Download FAISS Files from Hugging Face Hub if Missing
|
65 |
+
def download_faiss_from_hf():
|
66 |
+
if not os.path.exists(EMBEDDINGS_FILE):
|
67 |
+
print("π₯ Downloading FAISS embeddings from Hugging Face...")
|
68 |
+
hf_hub_download(repo_id=HF_REPO_ID, filename=EMBEDDINGS_FILE, local_dir=".", token=HF_TOKEN)
|
69 |
+
|
70 |
+
if not os.path.exists(INDEX_FILE):
|
71 |
+
print("π₯ Downloading FAISS index from Hugging Face...")
|
72 |
+
hf_hub_download(repo_id=HF_REPO_ID, filename=INDEX_FILE, local_dir=".", token=HF_TOKEN)
|
73 |
+
|
74 |
+
print("β
FAISS files downloaded from Hugging Face.")
|
75 |
+
|
76 |
+
# πΉ Check if FAISS Files Exist, Otherwise Download
|
77 |
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
78 |
+
print("β
FAISS files found locally. Loading from disk...")
|
79 |
embeddings = np.load(EMBEDDINGS_FILE)
|
80 |
index = faiss.read_index(INDEX_FILE)
|
81 |
else:
|
82 |
+
print("π FAISS files not found! Downloading from Hugging Face...")
|
83 |
+
download_faiss_from_hf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
86 |
+
embeddings = np.load(EMBEDDINGS_FILE)
|
87 |
+
index = faiss.read_index(INDEX_FILE)
|
88 |
+
else:
|
89 |
+
print("π No FAISS files found. Recomputing...")
|
90 |
+
if chunks:
|
91 |
+
embeddings = np.array([model.encode(chunk) for chunk in chunks])
|
92 |
+
|
93 |
+
# Save embeddings for future use
|
94 |
+
np.save(EMBEDDINGS_FILE, embeddings)
|
95 |
+
|
96 |
+
# Use FAISS optimized index for faster lookup
|
97 |
+
d = embeddings.shape[1]
|
98 |
+
nlist = 10 # Number of clusters
|
99 |
+
index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
|
100 |
+
index.train(embeddings)
|
101 |
+
index.add(embeddings)
|
102 |
+
index.nprobe = 2 # Speed optimization
|
103 |
+
|
104 |
+
# Save FAISS index
|
105 |
+
faiss.write_index(index, INDEX_FILE)
|
106 |
+
upload_faiss_to_hf() # Upload FAISS files to Hugging Face
|
107 |
+
print("β
FAISS index created and saved.")
|
108 |
+
else:
|
109 |
+
print("β ERROR: No text to index. Check combined_text_documents.txt.")
|
110 |
+
index = None
|
111 |
+
|
112 |
+
# πΉ Function to Search FAISS
|
113 |
def search_policy(query, top_k=3):
|
114 |
if index is None:
|
115 |
return "Error: FAISS index is not available."
|
|
|
120 |
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
|
121 |
|
122 |
# πΉ Hugging Face LLM Client
|
123 |
+
from huggingface_hub import InferenceClient
|
124 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
125 |
|
126 |
+
# πΉ Function to Handle Chat Responses
|
127 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
messages = [{"role": "system", "content": system_message}]
|
129 |
|
130 |
for val in history:
|
|
|
167 |
yield response
|
168 |
|
169 |
# πΉ Gradio Chat Interface
|
170 |
+
import gradio as gr
|
171 |
+
|
172 |
demo = gr.ChatInterface(
|
173 |
respond,
|
174 |
additional_inputs=[
|
175 |
gr.Textbox(
|
176 |
+
value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs.",
|
177 |
label="System message"
|
178 |
),
|
179 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|