Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,141 @@
|
|
1 |
import os
|
2 |
import shutil
|
|
|
|
|
3 |
import gradio as gr
|
|
|
|
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def prepare_faiss_files():
|
7 |
-
if os.path.exists(
|
8 |
-
shutil.copy(
|
9 |
-
shutil.copy(
|
10 |
return "β
FAISS files are ready for download. Go to the 'Files' tab in Hugging Face Space and download them."
|
11 |
else:
|
12 |
return "β FAISS files not found. Try running the chatbot first to generate them."
|
13 |
|
14 |
-
# Gradio UI to trigger FAISS file preparation
|
15 |
with gr.Blocks() as download_ui:
|
16 |
gr.Markdown("### π½ Download FAISS Files")
|
17 |
download_button = gr.Button("Prepare FAISS Files for Download")
|
18 |
output_text = gr.Textbox()
|
19 |
download_button.click(fn=prepare_faiss_files, outputs=output_text)
|
20 |
|
21 |
-
# Launch the download interface
|
22 |
download_ui.launch()
|
|
|
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
import gradio as gr
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from huggingface_hub import HfApi, hf_hub_download, login
|
8 |
|
9 |
+
# πΉ Hugging Face Repository Details
|
10 |
+
HF_REPO_ID = "tstone87/repo" # Your dataset repo
|
11 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Retrieve token securely
|
12 |
+
|
13 |
+
if not HF_TOKEN:
|
14 |
+
raise ValueError("β ERROR: Hugging Face token not found. Add it as a secret in the Hugging Face Space settings.")
|
15 |
+
|
16 |
+
# πΉ Authenticate with Hugging Face
|
17 |
+
login(token=HF_TOKEN)
|
18 |
+
|
19 |
+
# πΉ File Paths
|
20 |
+
EMBEDDINGS_FILE = "policy_embeddings.npy"
|
21 |
+
INDEX_FILE = "faiss_index.bin"
|
22 |
+
TEXT_FILE = "combined_text_documents.txt"
|
23 |
+
|
24 |
+
# πΉ Load policy text from file
|
25 |
+
if os.path.exists(TEXT_FILE):
|
26 |
+
with open(TEXT_FILE, "r", encoding="utf-8") as f:
|
27 |
+
POLICY_TEXT = f.read()
|
28 |
+
print("β
Loaded policy text from combined_text_documents.txt")
|
29 |
+
else:
|
30 |
+
print("β ERROR: combined_text_documents.txt not found! Ensure it's uploaded.")
|
31 |
+
POLICY_TEXT = ""
|
32 |
+
|
33 |
+
# πΉ Sentence Embedding Model (Optimized for Speed)
|
34 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
35 |
+
|
36 |
+
# πΉ Split policy text into chunks for FAISS indexing
|
37 |
+
chunk_size = 500
|
38 |
+
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []
|
39 |
+
|
40 |
+
# πΉ Function to Upload FAISS Files to Hugging Face Hub
|
41 |
+
def upload_faiss_to_hf():
|
42 |
+
api = HfApi()
|
43 |
+
|
44 |
+
if os.path.exists(EMBEDDINGS_FILE):
|
45 |
+
print("π€ Uploading FAISS embeddings to Hugging Face...")
|
46 |
+
api.upload_file(
|
47 |
+
path_or_fileobj=EMBEDDINGS_FILE,
|
48 |
+
path_in_repo=EMBEDDINGS_FILE,
|
49 |
+
repo_id=HF_REPO_ID,
|
50 |
+
repo_type="dataset",
|
51 |
+
token=HF_TOKEN,
|
52 |
+
)
|
53 |
+
|
54 |
+
if os.path.exists(INDEX_FILE):
|
55 |
+
print("π€ Uploading FAISS index to Hugging Face...")
|
56 |
+
api.upload_file(
|
57 |
+
path_or_fileobj=INDEX_FILE,
|
58 |
+
path_in_repo=INDEX_FILE,
|
59 |
+
repo_id=HF_REPO_ID,
|
60 |
+
repo_type="dataset",
|
61 |
+
token=HF_TOKEN,
|
62 |
+
)
|
63 |
+
|
64 |
+
print("β
FAISS files successfully uploaded to Hugging Face.")
|
65 |
+
|
66 |
+
# πΉ Function to Download FAISS Files from Hugging Face Hub if Missing
|
67 |
+
def download_faiss_from_hf():
|
68 |
+
if not os.path.exists(EMBEDDINGS_FILE):
|
69 |
+
print("π₯ Downloading FAISS embeddings from Hugging Face...")
|
70 |
+
hf_hub_download(repo_id=HF_REPO_ID, filename=EMBEDDINGS_FILE, local_dir=".", token=HF_TOKEN)
|
71 |
+
|
72 |
+
if not os.path.exists(INDEX_FILE):
|
73 |
+
print("π₯ Downloading FAISS index from Hugging Face...")
|
74 |
+
hf_hub_download(repo_id=HF_REPO_ID, filename=INDEX_FILE, local_dir=".", token=HF_TOKEN)
|
75 |
+
|
76 |
+
print("β
FAISS files downloaded from Hugging Face.")
|
77 |
+
|
78 |
+
# πΉ Check if FAISS Files Exist, Otherwise Download or Generate
|
79 |
+
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
80 |
+
print("β
FAISS files found locally. Loading from disk...")
|
81 |
+
embeddings = np.load(EMBEDDINGS_FILE)
|
82 |
+
index = faiss.read_index(INDEX_FILE)
|
83 |
+
else:
|
84 |
+
print("π FAISS files not found! Downloading from Hugging Face...")
|
85 |
+
download_faiss_from_hf()
|
86 |
+
|
87 |
+
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
88 |
+
embeddings = np.load(EMBEDDINGS_FILE)
|
89 |
+
index = faiss.read_index(INDEX_FILE)
|
90 |
+
else:
|
91 |
+
print("π No FAISS files found. Recomputing...")
|
92 |
+
if chunks:
|
93 |
+
embeddings = np.array([model.encode(chunk) for chunk in chunks])
|
94 |
+
|
95 |
+
# Save embeddings for future use
|
96 |
+
np.save(EMBEDDINGS_FILE, embeddings)
|
97 |
+
|
98 |
+
# Use FAISS optimized index for faster lookup
|
99 |
+
d = embeddings.shape[1]
|
100 |
+
nlist = 10 # Number of clusters
|
101 |
+
index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
|
102 |
+
index.train(embeddings)
|
103 |
+
index.add(embeddings)
|
104 |
+
index.nprobe = 2 # Speed optimization
|
105 |
+
|
106 |
+
# Save FAISS index
|
107 |
+
faiss.write_index(index, INDEX_FILE)
|
108 |
+
upload_faiss_to_hf() # Upload FAISS files to Hugging Face
|
109 |
+
print("β
FAISS index created and saved.")
|
110 |
+
else:
|
111 |
+
print("β ERROR: No text to index. Check combined_text_documents.txt.")
|
112 |
+
index = None
|
113 |
+
|
114 |
+
# πΉ Function to Search FAISS
|
115 |
+
def search_policy(query, top_k=3):
|
116 |
+
if index is None:
|
117 |
+
return "Error: FAISS index is not available."
|
118 |
+
|
119 |
+
query_embedding = model.encode(query).reshape(1, -1)
|
120 |
+
distances, indices = index.search(query_embedding, top_k)
|
121 |
+
|
122 |
+
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
|
123 |
+
|
124 |
+
# πΉ Gradio UI to Download FAISS Files
|
125 |
def prepare_faiss_files():
|
126 |
+
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
127 |
+
shutil.copy(EMBEDDINGS_FILE, "/mnt/data/policy_embeddings.npy")
|
128 |
+
shutil.copy(INDEX_FILE, "/mnt/data/faiss_index.bin")
|
129 |
return "β
FAISS files are ready for download. Go to the 'Files' tab in Hugging Face Space and download them."
|
130 |
else:
|
131 |
return "β FAISS files not found. Try running the chatbot first to generate them."
|
132 |
|
|
|
133 |
with gr.Blocks() as download_ui:
|
134 |
gr.Markdown("### π½ Download FAISS Files")
|
135 |
download_button = gr.Button("Prepare FAISS Files for Download")
|
136 |
output_text = gr.Textbox()
|
137 |
download_button.click(fn=prepare_faiss_files, outputs=output_text)
|
138 |
|
|
|
139 |
download_ui.launch()
|
140 |
+
|
141 |
+
print("β
FAISS index successfully loaded.")
|