Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from huggingface_hub import HfApi, hf_hub_download, login
|
|
8 |
|
9 |
# πΉ Hugging Face Repository Details
|
10 |
HF_REPO_ID = "tstone87/repo" # Your dataset repo
|
11 |
-
HF_TOKEN = os.getenv("HF_TOKEN") #
|
12 |
|
13 |
if not HF_TOKEN:
|
14 |
raise ValueError("β ERROR: Hugging Face token not found. Add it as a secret in the Hugging Face Space settings.")
|
@@ -37,79 +37,53 @@ model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
37 |
chunk_size = 500
|
38 |
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []
|
39 |
|
40 |
-
# πΉ Function to
|
41 |
-
def upload_faiss_to_hf():
|
42 |
-
api = HfApi()
|
43 |
-
|
44 |
-
if os.path.exists(EMBEDDINGS_FILE):
|
45 |
-
print("π€ Uploading FAISS embeddings to Hugging Face...")
|
46 |
-
api.upload_file(
|
47 |
-
path_or_fileobj=EMBEDDINGS_FILE,
|
48 |
-
path_in_repo=EMBEDDINGS_FILE,
|
49 |
-
repo_id=HF_REPO_ID,
|
50 |
-
repo_type="dataset",
|
51 |
-
token=HF_TOKEN,
|
52 |
-
)
|
53 |
-
|
54 |
-
if os.path.exists(INDEX_FILE):
|
55 |
-
print("π€ Uploading FAISS index to Hugging Face...")
|
56 |
-
api.upload_file(
|
57 |
-
path_or_fileobj=INDEX_FILE,
|
58 |
-
path_in_repo=INDEX_FILE,
|
59 |
-
repo_id=HF_REPO_ID,
|
60 |
-
repo_type="dataset",
|
61 |
-
token=HF_TOKEN,
|
62 |
-
)
|
63 |
-
|
64 |
-
print("β
FAISS files successfully uploaded to Hugging Face.")
|
65 |
-
|
66 |
-
# πΉ Function to Download FAISS Files from Hugging Face Hub if Missing
|
67 |
def download_faiss_from_hf():
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# πΉ Check if FAISS Files Exist, Otherwise Download or Generate
|
79 |
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
80 |
print("β
FAISS files found locally. Loading from disk...")
|
81 |
embeddings = np.load(EMBEDDINGS_FILE)
|
82 |
index = faiss.read_index(INDEX_FILE)
|
|
|
|
|
|
|
83 |
else:
|
84 |
-
print("π FAISS files
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
embeddings
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
-
print("
|
92 |
-
|
93 |
-
embeddings = np.array([model.encode(chunk) for chunk in chunks])
|
94 |
-
|
95 |
-
# Save embeddings for future use
|
96 |
-
np.save(EMBEDDINGS_FILE, embeddings)
|
97 |
-
|
98 |
-
# Use FAISS optimized index for faster lookup
|
99 |
-
d = embeddings.shape[1]
|
100 |
-
nlist = 10 # Number of clusters
|
101 |
-
index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
|
102 |
-
index.train(embeddings)
|
103 |
-
index.add(embeddings)
|
104 |
-
index.nprobe = 2 # Speed optimization
|
105 |
-
|
106 |
-
# Save FAISS index
|
107 |
-
faiss.write_index(index, INDEX_FILE)
|
108 |
-
upload_faiss_to_hf() # Upload FAISS files to Hugging Face
|
109 |
-
print("β
FAISS index created and saved.")
|
110 |
-
else:
|
111 |
-
print("β ERROR: No text to index. Check combined_text_documents.txt.")
|
112 |
-
index = None
|
113 |
|
114 |
# πΉ Function to Search FAISS
|
115 |
def search_policy(query, top_k=3):
|
@@ -121,21 +95,83 @@ def search_policy(query, top_k=3):
|
|
121 |
|
122 |
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
|
123 |
|
124 |
-
# πΉ
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
127 |
shutil.copy(EMBEDDINGS_FILE, "/mnt/data/policy_embeddings.npy")
|
128 |
shutil.copy(INDEX_FILE, "/mnt/data/faiss_index.bin")
|
129 |
-
return "β
FAISS files
|
130 |
else:
|
131 |
-
return "β FAISS files not found.
|
132 |
|
133 |
-
|
134 |
-
|
|
|
135 |
download_button = gr.Button("Prepare FAISS Files for Download")
|
136 |
output_text = gr.Textbox()
|
137 |
-
download_button.click(fn=
|
138 |
-
|
139 |
-
download_ui.launch()
|
140 |
|
141 |
-
|
|
|
|
|
|
8 |
|
9 |
# πΉ Hugging Face Repository Details
|
10 |
HF_REPO_ID = "tstone87/repo" # Your dataset repo
|
11 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Secure API token
|
12 |
|
13 |
if not HF_TOKEN:
|
14 |
raise ValueError("β ERROR: Hugging Face token not found. Add it as a secret in the Hugging Face Space settings.")
|
|
|
37 |
chunk_size = 500
|
38 |
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []
|
39 |
|
40 |
+
# πΉ Function to Download FAISS Files from Hugging Face Hub if Available
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def download_faiss_from_hf():
|
42 |
+
try:
|
43 |
+
if not os.path.exists(EMBEDDINGS_FILE):
|
44 |
+
print("π₯ Downloading FAISS embeddings from Hugging Face...")
|
45 |
+
hf_hub_download(repo_id=HF_REPO_ID, filename=EMBEDDINGS_FILE, local_dir=".", token=HF_TOKEN)
|
46 |
|
47 |
+
if not os.path.exists(INDEX_FILE):
|
48 |
+
print("π₯ Downloading FAISS index from Hugging Face...")
|
49 |
+
hf_hub_download(repo_id=HF_REPO_ID, filename=INDEX_FILE, local_dir=".", token=HF_TOKEN)
|
50 |
|
51 |
+
print("β
FAISS files downloaded from Hugging Face.")
|
52 |
+
return True
|
53 |
+
except Exception as e:
|
54 |
+
print(f"β οΈ FAISS files not found in Hugging Face repo. Recomputing... ({e})")
|
55 |
+
return False
|
56 |
|
57 |
# πΉ Check if FAISS Files Exist, Otherwise Download or Generate
|
58 |
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
59 |
print("β
FAISS files found locally. Loading from disk...")
|
60 |
embeddings = np.load(EMBEDDINGS_FILE)
|
61 |
index = faiss.read_index(INDEX_FILE)
|
62 |
+
elif download_faiss_from_hf():
|
63 |
+
embeddings = np.load(EMBEDDINGS_FILE)
|
64 |
+
index = faiss.read_index(INDEX_FILE)
|
65 |
else:
|
66 |
+
print("π No FAISS files found. Creating new index...")
|
67 |
+
if chunks:
|
68 |
+
embeddings = np.array([model.encode(chunk) for chunk in chunks])
|
69 |
+
|
70 |
+
# Save embeddings for future use
|
71 |
+
np.save(EMBEDDINGS_FILE, embeddings)
|
72 |
+
|
73 |
+
# Use FAISS optimized index for faster lookup
|
74 |
+
d = embeddings.shape[1]
|
75 |
+
nlist = 10 # Number of clusters
|
76 |
+
index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
|
77 |
+
index.train(embeddings)
|
78 |
+
index.add(embeddings)
|
79 |
+
index.nprobe = 2 # Speed optimization
|
80 |
+
|
81 |
+
# Save FAISS index
|
82 |
+
faiss.write_index(index, INDEX_FILE)
|
83 |
+
print("β
FAISS index created and saved.")
|
84 |
else:
|
85 |
+
print("β ERROR: No text to index. Check combined_text_documents.txt.")
|
86 |
+
index = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# πΉ Function to Search FAISS
|
89 |
def search_policy(query, top_k=3):
|
|
|
95 |
|
96 |
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
|
97 |
|
98 |
+
# πΉ Hugging Face LLM Client
|
99 |
+
from huggingface_hub import InferenceClient
|
100 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
101 |
+
|
102 |
+
# πΉ Function to Handle Chat Responses
|
103 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
104 |
+
messages = [{"role": "system", "content": system_message}]
|
105 |
+
|
106 |
+
for val in history:
|
107 |
+
if val[0]:
|
108 |
+
messages.append({"role": "user", "content": val[0]})
|
109 |
+
if val[1]:
|
110 |
+
messages.append({"role": "assistant", "content": val[1]})
|
111 |
+
|
112 |
+
# πΉ Retrieve relevant policy info from FAISS
|
113 |
+
policy_context = search_policy(message)
|
114 |
+
|
115 |
+
if policy_context:
|
116 |
+
# πΉ Display retrieved context in chat
|
117 |
+
messages.append({"role": "assistant", "content": f"π **Relevant Policy Context:**\n\n{policy_context}"})
|
118 |
+
|
119 |
+
# πΉ Force the LLM to use the retrieved policy text
|
120 |
+
user_query_with_context = f"""
|
121 |
+
The following is the most relevant policy information retrieved from the official Colorado public assistance policies:
|
122 |
+
|
123 |
+
{policy_context}
|
124 |
+
|
125 |
+
Based on this information, answer the following question:
|
126 |
+
{message}
|
127 |
+
"""
|
128 |
+
messages.append({"role": "user", "content": user_query_with_context})
|
129 |
+
else:
|
130 |
+
# If no relevant policy info is found, use the original message
|
131 |
+
messages.append({"role": "user", "content": message})
|
132 |
+
|
133 |
+
response = ""
|
134 |
+
for message in client.chat_completion(
|
135 |
+
messages,
|
136 |
+
max_tokens=max_tokens,
|
137 |
+
stream=True,
|
138 |
+
temperature=temperature,
|
139 |
+
top_p=top_p,
|
140 |
+
):
|
141 |
+
token = message.choices[0].delta.content
|
142 |
+
response += token
|
143 |
+
yield response
|
144 |
+
|
145 |
+
# πΉ Gradio Chat Interface
|
146 |
+
demo = gr.ChatInterface(
|
147 |
+
respond,
|
148 |
+
additional_inputs=[
|
149 |
+
gr.Textbox(
|
150 |
+
value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs.",
|
151 |
+
label="System message"
|
152 |
+
),
|
153 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
154 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
155 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
156 |
+
],
|
157 |
+
)
|
158 |
+
|
159 |
+
# πΉ Function to Provide FAISS Files for Download
|
160 |
+
def download_faiss_files():
|
161 |
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
|
162 |
shutil.copy(EMBEDDINGS_FILE, "/mnt/data/policy_embeddings.npy")
|
163 |
shutil.copy(INDEX_FILE, "/mnt/data/faiss_index.bin")
|
164 |
+
return "β
FAISS files ready for download! Check the 'Files' tab in your Hugging Face Space."
|
165 |
else:
|
166 |
+
return "β FAISS files not found. Run the chatbot first to generate them."
|
167 |
|
168 |
+
# Gradio button for downloading FAISS files
|
169 |
+
with gr.Blocks() as file_download:
|
170 |
+
gr.Markdown("### π½ Download FAISS Files to Your Computer")
|
171 |
download_button = gr.Button("Prepare FAISS Files for Download")
|
172 |
output_text = gr.Textbox()
|
173 |
+
download_button.click(fn=download_faiss_files, outputs=output_text)
|
|
|
|
|
174 |
|
175 |
+
if __name__ == "__main__":
|
176 |
+
demo.launch()
|
177 |
+
file_download.launch()
|