Spaces:
Sleeping
Sleeping
File size: 5,624 Bytes
b051880 f98a043 0707d05 b051880 f0f9dff b051880 36fbec5 b051880 8a3e216 b051880 8a3e216 36fbec5 9d79b23 b051880 8a3e216 b051880 8a3e216 b051880 cac62cc b051880 0707d05 8a3e216 b051880 8a3e216 b051880 8a3e216 0707d05 b051880 0707d05 b051880 f0f9dff 8a3e216 b051880 f0f9dff b051880 8a3e216 cac62cc b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 8a3e216 b051880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import os
import tempfile
import cv2
import streamlit as st
import PIL
from ultralytics import YOLO
# Required libraries (ensure these are in your requirements.txt):
# streamlit
# opencv-python-headless
# ultralytics
# Pillow
# Replace with your model's URL or local path
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/blob/main/best.pt'
# Configure the page for Hugging Face Spaces
st.set_page_config(
page_title="Fire Watch using AI vision models",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
# Sidebar for file upload and settings
with st.sidebar:
st.header("IMAGE/VIDEO UPLOAD")
source_file = st.file_uploader(
"Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
video_option = st.selectbox(
"Select Video Shortening Option",
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
)
# Main page header and introduction images
st.title("WildfireWatch: Detecting Wildfire using AI")
col1, col2 = st.columns(2)
with col1:
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
with col2:
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
st.markdown("""
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas. Early detection is critical to mitigating risks. WildfireWatch leverages the YOLOv8 model for real-time fire and smoke detection in images and videos.
""")
st.markdown("---")
st.header("Fire Detection:")
col1, col2 = st.columns(2)
if source_file:
if source_file.type.split('/')[0] == 'image':
uploaded_image = PIL.Image.open(source_file)
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
else:
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(source_file.read())
vidcap = cv2.VideoCapture(tfile.name)
else:
st.info("Please upload an image or video file to begin.")
# Load the YOLO model
try:
model = YOLO(model_path)
except Exception as ex:
st.error(f"Unable to load model. Check the specified path: {model_path}")
st.error(ex)
if st.sidebar.button("Let's Detect Wildfire"):
if not source_file:
st.warning("No file uploaded!")
elif source_file.type.split('/')[0] == 'image':
# Process image input
res = model.predict(uploaded_image, conf=confidence)
boxes = res[0].boxes
res_plotted = res[0].plot()[:, :, ::-1]
with col2:
st.image(res_plotted, caption='Detected Image', use_column_width=True)
with st.expander("Detection Results"):
for box in boxes:
st.write(box.xywh)
else:
# Process video input and shorten video based on sampling option
processed_frames = []
frame_count = 0
# Video properties
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Determine sampling interval and output fps
if video_option == "Original FPS":
sample_interval = 1 # process every frame
output_fps = orig_fps
elif video_option == "1 fps":
sample_interval = int(orig_fps) if orig_fps > 0 else 1
output_fps = 1
elif video_option == "1 frame per 5 seconds":
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
output_fps = 1
elif video_option == "1 frame per 10 seconds":
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
output_fps = 1
elif video_option == "1 frame per 15 seconds":
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
output_fps = 1
else:
sample_interval = 1
output_fps = orig_fps
success, image = vidcap.read()
while success:
if frame_count % sample_interval == 0:
res = model.predict(image, conf=confidence)
res_plotted = res[0].plot()[:, :, ::-1]
processed_frames.append(res_plotted)
with col2:
st.image(res_plotted, caption=f'Detected Frame {frame_count}', use_column_width=True)
with st.expander("Detection Results"):
for box in res[0].boxes:
st.write(box.xywh)
frame_count += 1
success, image = vidcap.read()
if processed_frames:
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
for frame in processed_frames:
out.write(frame)
out.release()
st.success("Shortened video created successfully!")
with open(temp_video_file.name, 'rb') as video_file:
st.download_button(
label="Download Shortened Video",
data=video_file.read(),
file_name="shortened_video.mp4",
mime="video/mp4"
)
else:
st.error("No frames were processed from the video.")
|