Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,318 Bytes
7da056c 8d37981 056829f f3beecc 056829f f1a05f0 88d8229 056829f f1a05f0 056829f 8d37981 f1a05f0 056829f f1a05f0 8d37981 056829f f1a05f0 88d8229 056829f f1a05f0 8d37981 056829f f1a05f0 8d37981 056829f f1a05f0 8d37981 056829f fc65614 056829f fc65614 056829f fc65614 056829f fc65614 056829f fc65614 88d8229 056829f 8d37981 fc65614 056829f 88d8229 056829f f1a05f0 056829f f1a05f0 fc65614 056829f f1a05f0 056829f 300ca95 8d37981 056829f 8d37981 056829f be22e58 056829f 8d37981 056829f 8d37981 056829f 8d37981 056829f be22e58 8d37981 056829f f3beecc 056829f f3beecc c1ee18a 056829f c1ee18a 8d37981 056829f 88d8229 a79a4d5 0b544bf 8d37981 0b544bf a79a4d5 88d8229 8d37981 056829f f3beecc 8d37981 a79a4d5 8d37981 056829f 8d37981 056829f f3beecc f1a05f0 8d37981 056829f f1a05f0 056829f fc65614 056829f 2a19412 056829f fc65614 487bc0b 2a19412 f3beecc 056829f f3beecc 056829f a79a4d5 056829f f3beecc 056829f 8d37981 056829f a79a4d5 056829f 487bc0b 056829f f3beecc 056829f f3beecc 056829f f3beecc 056829f 8d37981 056829f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import spaces
"""
Copyright NewGenAI
Code can't be included in commercial app used for monetary gain. No derivative code allowed.
"""
import gc
import json
import torch
import tqdm
import gradio as gr
import random
import time
from datetime import datetime
import os
from diffusers.utils import export_to_video
from diffusers import LTXPipeline
from transformers import T5EncoderModel, T5Tokenizer
from pathlib import Path
from datetime import datetime
from huggingface_hub import hf_hub_download
STATE_FILE = "LTX091_state.json"
queue = []
def load_state():
if os.path.exists(STATE_FILE):
with open(STATE_FILE, "r") as file:
return json.load(file)
return {}
# Function to save the current state
def save_state(state):
with open(STATE_FILE, "w") as file:
json.dump(state, file)
# Load initial state
initial_state = load_state()
def add_to_queue(prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
task = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"fps": fps,
"seed": seed,
}
queue.append(task)
return f"Task added to queue. Current queue length: {len(queue)}"
def clear_queue():
queue.clear()
return "Queue cleared."
def process_queue():
if not queue:
return "Queue is empty."
for i, task in tqdm(enumerate(queue)):
generate_video(**task)
time.sleep(1) # Simulate processing time
queue.clear()
tqdm.close()
return "All tasks in the queue have been processed."
def save_ui_state(prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
state = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"fps": fps,
"seed": seed,
}
save_state(state)
return "State saved!"
repo_id = "a-r-r-o-w/LTX-Video-0.9.1-diffusers"
base_path = repo_id
files_to_download = [
"model_index.json",
"scheduler/scheduler_config.json",
"text_encoder/config.json",
"text_encoder/model-00001-of-00004.safetensors",
"text_encoder/model-00002-of-00004.safetensors",
"text_encoder/model-00003-of-00004.safetensors",
"text_encoder/model-00004-of-00004.safetensors",
"text_encoder/model.safetensors.index.json",
"tokenizer/added_tokens.json",
"tokenizer/special_tokens_map.json",
"tokenizer/spiece.model",
"tokenizer/tokenizer_config.json",
"transformer/config.json",
"transformer/diffusion_pytorch_model.safetensors",
"vae/config.json",
"vae/diffusion_pytorch_model.safetensors",
]
os.makedirs(base_path, exist_ok=True)
for file_path in files_to_download:
try:
# Create the full directory path for this file
full_dir = os.path.join(base_path, os.path.dirname(file_path))
os.makedirs(full_dir, exist_ok=True)
# Download the file
downloaded_path = hf_hub_download(
repo_id=repo_id,
filename=file_path,
local_dir=base_path,
)
print(f"Successfully downloaded: {file_path}")
except Exception as e:
print(f"Error downloading {file_path}: {str(e)}")
raise
# Download model from different repo
try:
# Create the full directory path for this file
full_dir = os.path.join(base_path, os.path.dirname(file_path))
os.makedirs(full_dir, exist_ok=True)
# Download the file
downloaded_path = hf_hub_download(
repo_id="Lightricks/LTX-Video",
filename="ltx-video-2b-v0.9.1.safetensors",
local_dir=repo_id,
)
except Exception as e:
print(f"Error downloading 0.9.1 model: {str(e)}")
raise
single_file_url = repo_id+"/ltx-video-2b-v0.9.1.safetensors"
text_encoder = T5EncoderModel.from_pretrained(
repo_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
)
tokenizer = T5Tokenizer.from_pretrained(
repo_id, subfolder="tokenizer", torch_dtype=torch.bfloat16
)
pipe = LTXPipeline.from_single_file(
single_file_url,
text_encoder=text_encoder,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16
)
pipe.vae.enable_tiling()
pipe.to("cuda")
# pipe.load_lora_weights("TODO/TODO", adapter_name="ltx-lora")
# pipe.set_adapters(["lrx-lora"], adapter_weights=[1.0])
INTERRUPT_PIPELINE = False
def interrupt_inference():
INTERRUPT_PIPELINE = True
def interrupt_callback(pipeline, i, t, callback_kwargs):
stop_idx = 19
if i >= stop_idx:
pipeline._interrupt = False
return callback_kwargs
pipeline._interrupt = INTERRUPT_PIPELINE
return callback_kwargs
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate_video(prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed, progress=gr.Progress(track_tqdm=True)):
INTERRUPT_PIPELINE = False
progress_steps = []
# Randomize seed if seed is 0
if seed == 0:
seed = randomize_seed()
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Generating the video <Does not support seed :( >
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
callback_on_step_end=interrupt_callback
).frames[0]
# Create output filename based on prompt and timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{prompt[:10]}_{timestamp}.mp4"
# Save the video to the output folder
os.makedirs("output_LTX091", exist_ok=True)
output_path = f"./output_LTX091/{filename}"
export_to_video(video, output_path, fps=fps)
torch.cuda.empty_cache()
gc.collect()
return output_path
# Gradio UI setup
def randomize_seed():
return random.randint(0, 999999)
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab("Generate Video"):
with gr.Row():
prompt = gr.Textbox(label="Prompt", lines=3, value=initial_state.get("prompt", "A dramatic view of the pyramids at Giza during sunset."))
negative_prompt = gr.Textbox(label="Negative Prompt", lines=3, value=initial_state.get("negative_prompt", "worst quality, blurry, distorted"))
with gr.Row():
height = gr.Slider(label="Height", minimum=224, maximum=768, step=32, value=initial_state.get("height", 384))
width = gr.Slider(label="Width", minimum=320, maximum=1280, step=32, value=initial_state.get("width", 640))
with gr.Row():
num_frames = gr.Slider(label="Number of Frames", minimum=1, maximum=121, step=1, value=initial_state.get("num_frames", 49))
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=30, step=1, value=initial_state.get("num_inference_steps", 20))
with gr.Row():
fps = gr.Slider(label="FPS", minimum=1, maximum=30, step=1, value=initial_state.get("fps", 16))
seed = gr.Number(label="Seed", value=initial_state.get("seed", 0))
random_seed_button = gr.Button("Randomize Seed")
output_video = gr.Video(label="Generated Video", show_label=True)
generate_button = gr.Button("Generate Video")
cancel_button = gr.Button("Cancel")
save_state_button = gr.Button("Save State")
random_seed_button.click(randomize_seed, outputs=seed)
generate_button.click(
generate_video,
inputs=[prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed],
outputs=output_video
)
cancel_button.click(
interrupt_inference,
outputs=gr.Text(label="Interrupted.")
)
save_state_button.click(
save_ui_state,
inputs=[prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed],
outputs=gr.Text(label="State Status")
)
with gr.Tab("Batch Processing"):
with gr.Row():
batch_prompt = gr.Textbox(label="Prompt", lines=3, value="A batch of videos depicting different landscapes.")
batch_negative_prompt = gr.Textbox(label="Negative Prompt", lines=3, value="low quality, inconsistent, jittery")
with gr.Row():
batch_height = gr.Slider(label="Height", minimum=224, maximum=768, step=32, value=384)
batch_width = gr.Slider(label="Width", minimum=320, maximum=1280, step=32, value=640)
with gr.Row():
batch_num_frames = gr.Slider(label="Number of Frames", minimum=1, maximum=121, step=1, value=49)
batch_num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=30, step=1, value=20)
with gr.Row():
batch_fps = gr.Slider(label="FPS", minimum=1, maximum=30, step=1, value=16)
batch_seed = gr.Number(label="Seed", value=0)
random_seed_batch_button = gr.Button("Randomize Seed")
add_to_queue_button = gr.Button("Add to Queue")
clear_queue_button = gr.Button("Clear Queue")
process_queue_button = gr.Button("Process Queue")
queue_status = gr.Text(label="Queue Status")
random_seed_batch_button.click(randomize_seed, outputs=batch_seed)
add_to_queue_button.click(
add_to_queue,
inputs=[batch_prompt, batch_negative_prompt, batch_height, batch_width, batch_num_frames, batch_num_inference_steps, batch_fps, batch_seed],
outputs=queue_status
)
clear_queue_button.click(clear_queue, outputs=queue_status)
process_queue_button.click(process_queue, outputs=queue_status)
demo.launch() |