Spaces:
Runtime error
Runtime error
different tabs for different functionality
Browse files
app.py
CHANGED
|
@@ -24,12 +24,14 @@ hf_token = os.getenv("HF_TOKEN")
|
|
| 24 |
# Set model download directory within Hugging Face Spaces
|
| 25 |
model_path = "asset"
|
| 26 |
if not os.path.exists(model_path):
|
| 27 |
-
snapshot_download(
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Global variables to load components
|
| 30 |
-
vae_dir = Path(model_path) /
|
| 31 |
-
unet_dir = Path(model_path) /
|
| 32 |
-
scheduler_dir = Path(model_path) /
|
| 33 |
|
| 34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
|
|
@@ -37,7 +39,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 37 |
def load_vae(vae_dir):
|
| 38 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
| 39 |
vae_config_path = vae_dir / "config.json"
|
| 40 |
-
with open(vae_config_path,
|
| 41 |
vae_config = json.load(f)
|
| 42 |
vae = CausalVideoAutoencoder.from_config(vae_config)
|
| 43 |
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
|
@@ -69,11 +71,11 @@ def center_crop_and_resize(frame, target_height, target_width):
|
|
| 69 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 70 |
new_width = int(h * aspect_ratio_target)
|
| 71 |
x_start = (w - new_width) // 2
|
| 72 |
-
frame_cropped = frame[:, x_start:x_start + new_width]
|
| 73 |
else:
|
| 74 |
new_height = int(w / aspect_ratio_target)
|
| 75 |
y_start = (h - new_height) // 2
|
| 76 |
-
frame_cropped = frame[y_start:y_start + new_height, :]
|
| 77 |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
|
| 78 |
return frame_resized
|
| 79 |
|
|
@@ -116,7 +118,7 @@ preset_options = [
|
|
| 116 |
{"label": "544x320, 241 frames", "width": 544, "height": 320, "num_frames": 241},
|
| 117 |
{"label": "512x320, 249 frames", "width": 512, "height": 320, "num_frames": 249},
|
| 118 |
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
|
| 119 |
-
{"label": "Custom", "height": None, "width": None, "num_frames": None}
|
| 120 |
]
|
| 121 |
|
| 122 |
|
|
@@ -130,10 +132,17 @@ def preset_changed(preset):
|
|
| 130 |
selected["num_frames"],
|
| 131 |
gr.update(visible=False),
|
| 132 |
gr.update(visible=False),
|
| 133 |
-
gr.update(visible=False)
|
| 134 |
)
|
| 135 |
else:
|
| 136 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
# Load models
|
|
@@ -141,8 +150,12 @@ vae = load_vae(vae_dir)
|
|
| 141 |
unet = load_unet(unet_dir)
|
| 142 |
scheduler = load_scheduler(scheduler_dir)
|
| 143 |
patchifier = SymmetricPatchifier(patch_size=1)
|
| 144 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
pipeline = XoraVideoPipeline(
|
| 148 |
transformer=unet,
|
|
@@ -154,26 +167,108 @@ pipeline = XoraVideoPipeline(
|
|
| 154 |
).to(device)
|
| 155 |
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if len(prompt.strip()) < 50:
|
| 164 |
-
raise gr.Error(
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
if image_path:
|
| 167 |
-
|
| 168 |
-
media_items=None
|
| 169 |
|
|
|
|
| 170 |
|
| 171 |
sample = {
|
| 172 |
"prompt": prompt,
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
}
|
| 178 |
|
| 179 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
@@ -196,14 +291,16 @@ def generate_video(image_path=None, prompt="", negative_prompt="",
|
|
| 196 |
vae_per_channel_normalize=True,
|
| 197 |
conditioning_method=ConditioningMethod.FIRST_FRAME,
|
| 198 |
mixed_precision=True,
|
| 199 |
-
callback_on_step_end=gradio_progress_callback
|
| 200 |
).images
|
| 201 |
|
| 202 |
output_path = tempfile.mktemp(suffix=".mp4")
|
| 203 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
| 204 |
video_np = (video_np * 255).astype(np.uint8)
|
| 205 |
height, width = video_np.shape[1:3]
|
| 206 |
-
out = cv2.VideoWriter(
|
|
|
|
|
|
|
| 207 |
for frame in video_np[..., ::-1]:
|
| 208 |
out.write(frame)
|
| 209 |
out.release()
|
|
@@ -211,55 +308,133 @@ def generate_video(image_path=None, prompt="", negative_prompt="",
|
|
| 211 |
return output_path
|
| 212 |
|
| 213 |
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
with gr.Blocks() as iface:
|
| 216 |
gr.Markdown("# Video Generation with LTX Video")
|
| 217 |
|
| 218 |
-
with gr.
|
| 219 |
-
with gr.
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
fn=preset_changed,
|
| 254 |
-
inputs=[
|
| 255 |
-
outputs=[
|
| 256 |
)
|
| 257 |
|
| 258 |
-
|
| 259 |
-
fn=
|
| 260 |
-
inputs=[
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
)
|
| 264 |
|
| 265 |
iface.launch(share=True)
|
|
|
|
| 24 |
# Set model download directory within Hugging Face Spaces
|
| 25 |
model_path = "asset"
|
| 26 |
if not os.path.exists(model_path):
|
| 27 |
+
snapshot_download(
|
| 28 |
+
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
|
| 29 |
+
)
|
| 30 |
|
| 31 |
# Global variables to load components
|
| 32 |
+
vae_dir = Path(model_path) / "vae"
|
| 33 |
+
unet_dir = Path(model_path) / "unet"
|
| 34 |
+
scheduler_dir = Path(model_path) / "scheduler"
|
| 35 |
|
| 36 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 37 |
|
|
|
|
| 39 |
def load_vae(vae_dir):
|
| 40 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
| 41 |
vae_config_path = vae_dir / "config.json"
|
| 42 |
+
with open(vae_config_path, "r") as f:
|
| 43 |
vae_config = json.load(f)
|
| 44 |
vae = CausalVideoAutoencoder.from_config(vae_config)
|
| 45 |
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
|
|
|
| 71 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 72 |
new_width = int(h * aspect_ratio_target)
|
| 73 |
x_start = (w - new_width) // 2
|
| 74 |
+
frame_cropped = frame[:, x_start : x_start + new_width]
|
| 75 |
else:
|
| 76 |
new_height = int(w / aspect_ratio_target)
|
| 77 |
y_start = (h - new_height) // 2
|
| 78 |
+
frame_cropped = frame[y_start : y_start + new_height, :]
|
| 79 |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
|
| 80 |
return frame_resized
|
| 81 |
|
|
|
|
| 118 |
{"label": "544x320, 241 frames", "width": 544, "height": 320, "num_frames": 241},
|
| 119 |
{"label": "512x320, 249 frames", "width": 512, "height": 320, "num_frames": 249},
|
| 120 |
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
|
| 121 |
+
{"label": "Custom", "height": None, "width": None, "num_frames": None},
|
| 122 |
]
|
| 123 |
|
| 124 |
|
|
|
|
| 132 |
selected["num_frames"],
|
| 133 |
gr.update(visible=False),
|
| 134 |
gr.update(visible=False),
|
| 135 |
+
gr.update(visible=False),
|
| 136 |
)
|
| 137 |
else:
|
| 138 |
+
return (
|
| 139 |
+
None,
|
| 140 |
+
None,
|
| 141 |
+
None,
|
| 142 |
+
gr.update(visible=True),
|
| 143 |
+
gr.update(visible=True),
|
| 144 |
+
gr.update(visible=True),
|
| 145 |
+
)
|
| 146 |
|
| 147 |
|
| 148 |
# Load models
|
|
|
|
| 150 |
unet = load_unet(unet_dir)
|
| 151 |
scheduler = load_scheduler(scheduler_dir)
|
| 152 |
patchifier = SymmetricPatchifier(patch_size=1)
|
| 153 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
| 154 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
|
| 155 |
+
).to(device)
|
| 156 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
| 157 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
| 158 |
+
)
|
| 159 |
|
| 160 |
pipeline = XoraVideoPipeline(
|
| 161 |
transformer=unet,
|
|
|
|
| 167 |
).to(device)
|
| 168 |
|
| 169 |
|
| 170 |
+
import gradio as gr
|
| 171 |
+
import torch
|
| 172 |
+
from huggingface_hub import snapshot_download
|
| 173 |
+
|
| 174 |
+
# [Previous imports remain the same...]
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def generate_video_from_text(
|
| 178 |
+
prompt="",
|
| 179 |
+
negative_prompt="",
|
| 180 |
+
seed=171198,
|
| 181 |
+
num_inference_steps=40,
|
| 182 |
+
num_images_per_prompt=1,
|
| 183 |
+
guidance_scale=3,
|
| 184 |
+
height=512,
|
| 185 |
+
width=768,
|
| 186 |
+
num_frames=121,
|
| 187 |
+
frame_rate=25,
|
| 188 |
+
progress=gr.Progress(),
|
| 189 |
+
):
|
| 190 |
+
if len(prompt.strip()) < 50:
|
| 191 |
+
raise gr.Error(
|
| 192 |
+
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
|
| 193 |
+
duration=5,
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
sample = {
|
| 197 |
+
"prompt": prompt,
|
| 198 |
+
"prompt_attention_mask": None,
|
| 199 |
+
"negative_prompt": negative_prompt,
|
| 200 |
+
"negative_prompt_attention_mask": None,
|
| 201 |
+
"media_items": None,
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
| 205 |
+
|
| 206 |
+
def gradio_progress_callback(self, step, timestep, kwargs):
|
| 207 |
+
progress((step + 1) / num_inference_steps)
|
| 208 |
+
|
| 209 |
+
images = pipeline(
|
| 210 |
+
num_inference_steps=num_inference_steps,
|
| 211 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 212 |
+
guidance_scale=guidance_scale,
|
| 213 |
+
generator=generator,
|
| 214 |
+
output_type="pt",
|
| 215 |
+
height=height,
|
| 216 |
+
width=width,
|
| 217 |
+
num_frames=num_frames,
|
| 218 |
+
frame_rate=frame_rate,
|
| 219 |
+
**sample,
|
| 220 |
+
is_video=True,
|
| 221 |
+
vae_per_channel_normalize=True,
|
| 222 |
+
conditioning_method=ConditioningMethod.FIRST_FRAME,
|
| 223 |
+
mixed_precision=True,
|
| 224 |
+
callback_on_step_end=gradio_progress_callback,
|
| 225 |
+
).images
|
| 226 |
+
|
| 227 |
+
output_path = tempfile.mktemp(suffix=".mp4")
|
| 228 |
+
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
| 229 |
+
video_np = (video_np * 255).astype(np.uint8)
|
| 230 |
+
height, width = video_np.shape[1:3]
|
| 231 |
+
out = cv2.VideoWriter(
|
| 232 |
+
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
| 233 |
+
)
|
| 234 |
+
for frame in video_np[..., ::-1]:
|
| 235 |
+
out.write(frame)
|
| 236 |
+
out.release()
|
| 237 |
+
|
| 238 |
+
return output_path
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def generate_video_from_image(
|
| 242 |
+
image_path,
|
| 243 |
+
prompt="",
|
| 244 |
+
negative_prompt="",
|
| 245 |
+
seed=171198,
|
| 246 |
+
num_inference_steps=40,
|
| 247 |
+
num_images_per_prompt=1,
|
| 248 |
+
guidance_scale=3,
|
| 249 |
+
height=512,
|
| 250 |
+
width=768,
|
| 251 |
+
num_frames=121,
|
| 252 |
+
frame_rate=25,
|
| 253 |
+
progress=gr.Progress(),
|
| 254 |
+
):
|
| 255 |
if len(prompt.strip()) < 50:
|
| 256 |
+
raise gr.Error(
|
| 257 |
+
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
|
| 258 |
+
duration=5,
|
| 259 |
+
)
|
| 260 |
|
| 261 |
+
if not image_path:
|
| 262 |
+
raise gr.Error("Please provide an input image.", duration=5)
|
|
|
|
| 263 |
|
| 264 |
+
media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device)
|
| 265 |
|
| 266 |
sample = {
|
| 267 |
"prompt": prompt,
|
| 268 |
+
"prompt_attention_mask": None,
|
| 269 |
+
"negative_prompt": negative_prompt,
|
| 270 |
+
"negative_prompt_attention_mask": None,
|
| 271 |
+
"media_items": media_items,
|
| 272 |
}
|
| 273 |
|
| 274 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
| 291 |
vae_per_channel_normalize=True,
|
| 292 |
conditioning_method=ConditioningMethod.FIRST_FRAME,
|
| 293 |
mixed_precision=True,
|
| 294 |
+
callback_on_step_end=gradio_progress_callback,
|
| 295 |
).images
|
| 296 |
|
| 297 |
output_path = tempfile.mktemp(suffix=".mp4")
|
| 298 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
| 299 |
video_np = (video_np * 255).astype(np.uint8)
|
| 300 |
height, width = video_np.shape[1:3]
|
| 301 |
+
out = cv2.VideoWriter(
|
| 302 |
+
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
| 303 |
+
)
|
| 304 |
for frame in video_np[..., ::-1]:
|
| 305 |
out.write(frame)
|
| 306 |
out.release()
|
|
|
|
| 308 |
return output_path
|
| 309 |
|
| 310 |
|
| 311 |
+
def create_advanced_options():
|
| 312 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 313 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=171198)
|
| 314 |
+
inference_steps = gr.Slider(
|
| 315 |
+
label="Inference Steps", minimum=1, maximum=100, step=1, value=40
|
| 316 |
+
)
|
| 317 |
+
images_per_prompt = gr.Slider(
|
| 318 |
+
label="Images per Prompt", minimum=1, maximum=10, step=1, value=1
|
| 319 |
+
)
|
| 320 |
+
guidance_scale = gr.Slider(
|
| 321 |
+
label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.0
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
height_slider = gr.Slider(
|
| 325 |
+
label="Height", minimum=256, maximum=1024, step=64, value=704, visible=False
|
| 326 |
+
)
|
| 327 |
+
width_slider = gr.Slider(
|
| 328 |
+
label="Width", minimum=256, maximum=1024, step=64, value=1216, visible=False
|
| 329 |
+
)
|
| 330 |
+
num_frames_slider = gr.Slider(
|
| 331 |
+
label="Number of Frames",
|
| 332 |
+
minimum=1,
|
| 333 |
+
maximum=200,
|
| 334 |
+
step=1,
|
| 335 |
+
value=41,
|
| 336 |
+
visible=False,
|
| 337 |
+
)
|
| 338 |
+
frame_rate = gr.Slider(
|
| 339 |
+
label="Frame Rate", minimum=1, maximum=60, step=1, value=25, visible=False
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
return [
|
| 343 |
+
seed,
|
| 344 |
+
inference_steps,
|
| 345 |
+
images_per_prompt,
|
| 346 |
+
guidance_scale,
|
| 347 |
+
height_slider,
|
| 348 |
+
width_slider,
|
| 349 |
+
num_frames_slider,
|
| 350 |
+
frame_rate,
|
| 351 |
+
]
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
# Define the Gradio interface with tabs
|
| 355 |
with gr.Blocks() as iface:
|
| 356 |
gr.Markdown("# Video Generation with LTX Video")
|
| 357 |
|
| 358 |
+
with gr.Tabs():
|
| 359 |
+
with gr.TabItem("Text to Video"):
|
| 360 |
+
with gr.Row():
|
| 361 |
+
with gr.Column():
|
| 362 |
+
txt2vid_prompt = gr.Textbox(
|
| 363 |
+
label="Prompt",
|
| 364 |
+
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains. The sky is clear with a few wispy clouds, and the sunlight glistens on the motorcycle as it speeds along. The rider is dressed in a black leather jacket and helmet, leaning slightly forward as the wind rustles through nearby trees. The wheels kick up dust, creating a slight trail behind the motorcycle, adding a sense of speed and excitement to the scene.",
|
| 365 |
+
)
|
| 366 |
+
txt2vid_negative_prompt = gr.Textbox(
|
| 367 |
+
label="Negative Prompt",
|
| 368 |
+
value="worst quality, inconsistent motion...",
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
# Preset dropdown for resolution and frame settings
|
| 372 |
+
txt2vid_preset = gr.Dropdown(
|
| 373 |
+
choices=[p["label"] for p in preset_options],
|
| 374 |
+
value="1216x704, 41 frames",
|
| 375 |
+
label="Resolution Preset",
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
txt2vid_advanced = create_advanced_options()
|
| 379 |
+
txt2vid_generate = gr.Button("Generate Video")
|
| 380 |
+
|
| 381 |
+
with gr.Column():
|
| 382 |
+
txt2vid_output = gr.Video(label="Generated Video")
|
| 383 |
+
|
| 384 |
+
with gr.TabItem("Image to Video"):
|
| 385 |
+
with gr.Row():
|
| 386 |
+
with gr.Column():
|
| 387 |
+
img2vid_image = gr.Image(type="filepath", label="Input Image")
|
| 388 |
+
img2vid_prompt = gr.Textbox(
|
| 389 |
+
label="Prompt",
|
| 390 |
+
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains...",
|
| 391 |
+
)
|
| 392 |
+
img2vid_negative_prompt = gr.Textbox(
|
| 393 |
+
label="Negative Prompt",
|
| 394 |
+
value="worst quality, inconsistent motion...",
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
img2vid_preset = gr.Dropdown(
|
| 398 |
+
choices=[p["label"] for p in preset_options],
|
| 399 |
+
value="1216x704, 41 frames",
|
| 400 |
+
label="Resolution Preset",
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
img2vid_advanced = create_advanced_options()
|
| 404 |
+
img2vid_generate = gr.Button("Generate Video")
|
| 405 |
+
|
| 406 |
+
with gr.Column():
|
| 407 |
+
img2vid_output = gr.Video(label="Generated Video")
|
| 408 |
+
|
| 409 |
+
# Event handlers for text-to-video tab
|
| 410 |
+
txt2vid_preset.change(
|
| 411 |
+
fn=preset_changed,
|
| 412 |
+
inputs=[txt2vid_preset],
|
| 413 |
+
outputs=txt2vid_advanced[4:], # height, width, num_frames, and their visibility
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
txt2vid_generate.click(
|
| 417 |
+
fn=generate_video_from_text,
|
| 418 |
+
inputs=[txt2vid_prompt, txt2vid_negative_prompt, *txt2vid_advanced],
|
| 419 |
+
outputs=txt2vid_output,
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
# Event handlers for image-to-video tab
|
| 423 |
+
img2vid_preset.change(
|
| 424 |
fn=preset_changed,
|
| 425 |
+
inputs=[img2vid_preset],
|
| 426 |
+
outputs=img2vid_advanced[4:], # height, width, num_frames, and their visibility
|
| 427 |
)
|
| 428 |
|
| 429 |
+
img2vid_generate.click(
|
| 430 |
+
fn=generate_video_from_image,
|
| 431 |
+
inputs=[
|
| 432 |
+
img2vid_image,
|
| 433 |
+
img2vid_prompt,
|
| 434 |
+
img2vid_negative_prompt,
|
| 435 |
+
*img2vid_advanced,
|
| 436 |
+
],
|
| 437 |
+
outputs=img2vid_output,
|
| 438 |
)
|
| 439 |
|
| 440 |
iface.launch(share=True)
|