tsqn commited on
Commit
7da056c
·
verified ·
1 Parent(s): a69f9a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -11
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  """
2
  Copyright NewGenAI
3
  Code can't be included in commercial app used for monetary gain. No derivative code allowed.
@@ -10,6 +11,7 @@ import time
10
  from datetime import datetime
11
  import os
12
 
 
13
  from diffusers.utils import export_to_video
14
  from diffusers import LTXImageToVideoPipeline
15
  from transformers import T5EncoderModel, T5Tokenizer
@@ -144,20 +146,24 @@ pipe = LTXImageToVideoPipeline.from_single_file(
144
  )
145
  pipe.enable_model_cpu_offload()
146
 
 
147
  def generate_video(image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
148
  if seed == 0:
149
  seed = random.randint(0, 999999)
150
-
151
- video = pipe(
152
- image=image,
153
- prompt=prompt,
154
- negative_prompt=negative_prompt,
155
- width=width,
156
- height=height,
157
- num_frames=num_frames,
158
- num_inference_steps=num_inference_steps,
159
- generator=torch.Generator(device='cuda').manual_seed(seed),
160
- ).frames[0]
 
 
 
161
 
162
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
163
  filename = f"{prompt[:10]}_{timestamp}.mp4"
 
1
+ import spaces
2
  """
3
  Copyright NewGenAI
4
  Code can't be included in commercial app used for monetary gain. No derivative code allowed.
 
11
  from datetime import datetime
12
  import os
13
 
14
+ import torch
15
  from diffusers.utils import export_to_video
16
  from diffusers import LTXImageToVideoPipeline
17
  from transformers import T5EncoderModel, T5Tokenizer
 
146
  )
147
  pipe.enable_model_cpu_offload()
148
 
149
+ @spaces.GPU()
150
  def generate_video(image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
151
  if seed == 0:
152
  seed = random.randint(0, 999999)
153
+
154
+ torch.cuda.synchronize()
155
+ torch.cuda.empty_cache()
156
+ with torch.inference_mode():
157
+ video = pipe(
158
+ image=image,
159
+ prompt=prompt,
160
+ negative_prompt=negative_prompt,
161
+ width=width,
162
+ height=height,
163
+ num_frames=num_frames,
164
+ num_inference_steps=num_inference_steps,
165
+ generator=torch.Generator(device='cuda').manual_seed(seed),
166
+ ).frames[0]
167
 
168
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
169
  filename = f"{prompt[:10]}_{timestamp}.mp4"