Spaces:
Runtime error
Runtime error
Enhance video generation error handling and memory management
Browse files
app.py
CHANGED
|
@@ -17,6 +17,7 @@ import cv2
|
|
| 17 |
from PIL import Image
|
| 18 |
import tempfile
|
| 19 |
import os
|
|
|
|
| 20 |
|
| 21 |
# Load Hugging Face token if needed
|
| 22 |
hf_token = os.getenv("HF_TOKEN")
|
|
@@ -198,24 +199,34 @@ def generate_video_from_text(
|
|
| 198 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
| 199 |
progress((step + 1) / num_inference_steps)
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
output_path = tempfile.mktemp(suffix=".mp4")
|
| 221 |
print(images.shape)
|
|
@@ -257,7 +268,9 @@ def generate_video_from_image(
|
|
| 257 |
if not image_path:
|
| 258 |
raise gr.Error("Please provide an input image.", duration=5)
|
| 259 |
|
| 260 |
-
media_items =
|
|
|
|
|
|
|
| 261 |
|
| 262 |
sample = {
|
| 263 |
"prompt": prompt,
|
|
@@ -271,6 +284,7 @@ def generate_video_from_image(
|
|
| 271 |
|
| 272 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
| 273 |
progress((step + 1) / num_inference_steps)
|
|
|
|
| 274 |
try:
|
| 275 |
with torch.no_grad():
|
| 276 |
images = pipeline(
|
|
@@ -301,13 +315,17 @@ def generate_video_from_image(
|
|
| 301 |
for frame in video_np[..., ::-1]:
|
| 302 |
out.write(frame)
|
| 303 |
out.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
finally:
|
| 305 |
-
|
| 306 |
-
del images
|
| 307 |
-
del video_np
|
| 308 |
-
gc.collect()
|
| 309 |
torch.cuda.empty_cache()
|
| 310 |
-
|
|
|
|
| 311 |
return output_path
|
| 312 |
|
| 313 |
|
|
|
|
| 17 |
from PIL import Image
|
| 18 |
import tempfile
|
| 19 |
import os
|
| 20 |
+
import gc
|
| 21 |
|
| 22 |
# Load Hugging Face token if needed
|
| 23 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
| 199 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
| 200 |
progress((step + 1) / num_inference_steps)
|
| 201 |
|
| 202 |
+
try:
|
| 203 |
+
with torch.no_grad():
|
| 204 |
+
images = pipeline(
|
| 205 |
+
num_inference_steps=num_inference_steps,
|
| 206 |
+
num_images_per_prompt=1,
|
| 207 |
+
guidance_scale=guidance_scale,
|
| 208 |
+
generator=generator,
|
| 209 |
+
output_type="pt",
|
| 210 |
+
height=height,
|
| 211 |
+
width=width,
|
| 212 |
+
num_frames=num_frames,
|
| 213 |
+
frame_rate=frame_rate,
|
| 214 |
+
**sample,
|
| 215 |
+
is_video=True,
|
| 216 |
+
vae_per_channel_normalize=True,
|
| 217 |
+
conditioning_method=ConditioningMethod.FIRST_FRAME,
|
| 218 |
+
mixed_precision=True,
|
| 219 |
+
callback_on_step_end=gradio_progress_callback,
|
| 220 |
+
).images
|
| 221 |
+
except Exception as e:
|
| 222 |
+
raise gr.Error(
|
| 223 |
+
f"An error occurred while generating the video. Please try again. Error: {e}",
|
| 224 |
+
duration=5,
|
| 225 |
+
)
|
| 226 |
+
finally:
|
| 227 |
+
pipeline.to("cpu")
|
| 228 |
+
torch.cuda.empty_cache()
|
| 229 |
+
gc.collect()
|
| 230 |
|
| 231 |
output_path = tempfile.mktemp(suffix=".mp4")
|
| 232 |
print(images.shape)
|
|
|
|
| 268 |
if not image_path:
|
| 269 |
raise gr.Error("Please provide an input image.", duration=5)
|
| 270 |
|
| 271 |
+
media_items = (
|
| 272 |
+
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
|
| 273 |
+
)
|
| 274 |
|
| 275 |
sample = {
|
| 276 |
"prompt": prompt,
|
|
|
|
| 284 |
|
| 285 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
| 286 |
progress((step + 1) / num_inference_steps)
|
| 287 |
+
|
| 288 |
try:
|
| 289 |
with torch.no_grad():
|
| 290 |
images = pipeline(
|
|
|
|
| 315 |
for frame in video_np[..., ::-1]:
|
| 316 |
out.write(frame)
|
| 317 |
out.release()
|
| 318 |
+
except Exception as e:
|
| 319 |
+
raise gr.Error(
|
| 320 |
+
f"An error occurred while generating the video. Please try again. Error: {e}",
|
| 321 |
+
duration=5,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
finally:
|
| 325 |
+
pipeline.to("cpu")
|
|
|
|
|
|
|
|
|
|
| 326 |
torch.cuda.empty_cache()
|
| 327 |
+
gc.collect()
|
| 328 |
+
|
| 329 |
return output_path
|
| 330 |
|
| 331 |
|