Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,058 Bytes
fa19523 373d8e0 fa19523 005f7bb fa19523 373d8e0 ba2f501 fa19523 c1e180a fa19523 69dbad3 fa19523 69dbad3 fa19523 50a6090 373d8e0 2e1efa3 fa19523 cc07737 2e1efa3 fa19523 ce3e13a fa19523 ba2f501 fa19523 69dbad3 fa19523 56c7591 69dbad3 069a909 ba2f501 69dbad3 ba2f501 69dbad3 ba2f501 69dbad3 ba2f501 f9e1c39 ba2f501 101a629 69dbad3 373d8e0 fa19523 ba2f501 fa19523 ba2f501 fa19523 69dbad3 f9e1c39 fa19523 69dbad3 fa19523 69dbad3 fa19523 69dbad3 ba2f501 fa19523 ba2f501 fa19523 ba2f501 a39709a ba2f501 ce3e13a ba2f501 fa19523 ba2f501 fa19523 ba2f501 fa19523 50a6090 ba2f501 fa19523 ba2f501 fee3b02 3c78c06 fee3b02 c27a6b3 fee3b02 a75d66e fee3b02 c236c1c c27a6b3 fee3b02 fa19523 ba2f501 fa19523 f738a77 69dbad3 fa19523 ba2f501 fa19523 99a73f4 fa19523 ba2f501 fa19523 99a73f4 f738a77 99a73f4 fa19523 ba2f501 fa19523 ce3e13a fa19523 ba2f501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import io
import os
import shutil
import uuid
import torch
import random
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageCms
import torch
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from pipeline_flux_control_removal import FluxControlRemovalPipeline
pipe = None
torch.set_grad_enabled(False)
image_examples = [
[
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
],
[
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
],
[
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
],
[
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
],
[
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
],
[
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
]
]
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
with torch.no_grad():
initial_input_channels = transformer.config.in_channels
new_linear = torch.nn.Linear(
transformer.x_embedder.in_features*4,
transformer.x_embedder.out_features,
bias=transformer.x_embedder.bias is not None,
dtype=transformer.dtype,
device=transformer.device,
)
new_linear.weight.zero_()
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
if transformer.x_embedder.bias is not None:
new_linear.bias.copy_(transformer.x_embedder.bias)
transformer.x_embedder = new_linear
transformer.register_to_config(in_channels=initial_input_channels*4)
pipe = FluxControlRemovalPipeline.from_pretrained(
base_model_path,
transformer=transformer,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
gr.Info(str(f"Inject LoRA: {lora_path}"))
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
@spaces.GPU
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
@spaces.GPU
def predict(
input_image,
uploaded_mask,
prompt,
ddim_steps,
seed,
scale,
):
gr.Info(str(f"Set seed = {seed}"))
size1, size2 = input_image.convert("RGB").size
icc_profile = input_image.info.get('icc_profile')
if icc_profile:
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
srgb_profile = ImageCms.createProfile("sRGB")
io_handle = io.BytesIO(icc_profile)
src_profile = ImageCms.ImageCmsProfile(io_handle)
input_image = ImageCms.profileToProfile(input_image, src_profile, srgb_profile)
input_image.info.pop('icc_profile', None)
if size1 < size2:
input_image = input_image.convert("RGB").resize((1024, int(size2 / size1 * 1024)))
else:
input_image = input_image.convert("RGB").resize((int(size1 / size2 * 1024), 1024))
img = np.array(input_image.convert("RGB"))
W = int(np.shape(img)[1] - np.shape(img)[1] % 16)
H = int(np.shape(img)[0] - np.shape(img)[0] % 16)
input_image = input_image.resize((H, W))
uploaded_mask = uploaded_mask.resize((H, W))
if seed == -1:
seed = random.randint(1, 2147483647)
set_seed(random.randint(1, 2147483647))
else:
set_seed(seed)
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'
result = pipe(
prompt=prompt,
control_image=input_image.convert("RGB"),
control_mask=uploaded_mask.convert("RGB"),
width=W,
height=H,
num_inference_steps=ddim_steps,
generator=torch.Generator("cuda").manual_seed(seed),
guidance_scale=scale,
max_sequence_length=512,
).images[0]
mask_np = np.array(uploaded_mask.convert("RGB"))
red = np.array(input_image).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(input_image)
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
dict_res = [input_image, uploaded_mask, result_m, result]
dict_out = [result]
image_path = None
mask_path = None
return dict_out, dict_res
def infer(
input_image,
uploaded_mask,
ddim_steps,
seed,
scale,
removal_prompt,
):
return predict(input_image,
uploaded_mask,
removal_prompt,
ddim_steps,
seed,
scale,
)
def process_example(image_paths, mask_paths):
global image_path, mask_path
image = Image.open(image_paths).convert("RGB")
mask = Image.open(mask_paths).convert("L")
black_background = Image.new("RGB", image.size, (0, 0, 0))
masked_image = Image.composite(black_background, image, mask)
image_path = image_paths
mask_path = mask_paths
return masked_image
custom_css = """
.contain { max-width: 1200px !important; }
.custom-image {
border: 2px dashed #7e22ce !important;
border-radius: 12px !important;
transition: all 0.3s ease !important;
}
.custom-image:hover {
border-color: #9333ea !important;
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
}
.btn-primary {
background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
border: none !important;
color: white !important;
border-radius: 8px !important;
}
#inline-examples {
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
padding: 16px !important;
margin-top: 8px !important;
}
#inline-examples .thumbnail {
border-radius: 8px !important;
transition: transform 0.2s ease !important;
}
#inline-examples .thumbnail:hover {
transform: scale(1.05);
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
.example-title h3 {
margin: 0 0 12px 0 !important;
color: #475569 !important;
font-size: 1.1em !important;
display: flex !important;
align-items: center !important;
}
.example-title h3::before {
content: "📚";
margin-right: 8px;
font-size: 1.2em;
}
.row { align-items: stretch !important; }
.panel { height: 100%; }
"""
with gr.Blocks(
css=custom_css,
theme=gr.themes.Soft(
primary_hue="purple",
secondary_hue="purple",
font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
),
title="Omnieraser"
) as demo:
ddim_steps = gr.Slider(visible=False, value=28)
scale = gr.Slider(visible=False, value=3.5)
seed = gr.Slider(visible=False, value=-1)
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
gr.Markdown("""
<div align="center">
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">🪄 Omnieraser</h1>
</div>
""")
gr.Markdown("""
This is the demo of the paper "OmniEraser: Remove Objects and Their Effects in Images with Paired Video-Frame Data".
To use this application:
1. Upload an image.
2. Upload a pre-defined mask (Unfortunatey, you cannot sketch mask here due to the compatibility issues with zerogpu, if you need draw mask manually, please use our offline gradio script available in our GitHub repository).
3. Set the seed (default is 1234).
4. Click 'Start Processing' to process the image.
5. The result will be displayed.
Note: The mask should be a binary image where the object to be removed is white and the background is black.
More details can be found at our [GitHub Repository](https://github.com/PRIS-CV/Omnieraser).
""")
with gr.Row(equal_height=False):
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## 📥 Input Panel")
with gr.Group():
input_image = gr.Image(label="Upload Image", type="pil", image_mode="RGB")
uploaded_mask = gr.Image(label="Upload Mask", type="pil", image_mode="L")
with gr.Row(variant="compact"):
run_button = gr.Button(
"🚀 Start Processing",
variant="primary",
size="lg"
)
with gr.Group():
gr.Markdown("### ⚙️ Control Parameters")
seed = gr.Slider(
label="Random Seed",
minimum=-1,
maximum=2147483647,
value=1234,
step=1,
info="-1 for random generation"
)
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## 📤 Output Panel")
with gr.Tabs():
with gr.Tab("Final Result"):
inpaint_result = gr.Gallery(
label="Generated Image",
columns=2,
height=450,
preview=True,
object_fit="contain"
)
with gr.Tab("Visualization Steps"):
gallery = gr.Gallery(
label="Workflow Steps",
columns=2,
height=450,
object_fit="contain"
)
with gr.Column(scale=1, variant="panel"):
with gr.Column(variant="panel"):
gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
example = gr.Examples(
examples=image_examples,
inputs=[
input_image, uploaded_mask
],
outputs=[inpaint_result, gallery],
examples_per_page=10,
label="Click any example to load",
elem_id="inline-examples"
)
run_button.click(
fn=infer,
inputs=[
input_image,
uploaded_mask,
ddim_steps,
seed,
scale,
removal_prompt,
],
outputs=[inpaint_result, gallery]
)
demo.launch()
|