Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,928 Bytes
fa19523 373d8e0 fa19523 005f7bb fa19523 373d8e0 fa19523 2e1efa3 fa19523 374ad1a fa19523 373d8e0 fa19523 373d8e0 fa19523 374ad1a fa19523 1b5b896 2e1efa3 fa19523 cc07737 2e1efa3 fa19523 069a909 fa19523 069a909 fa19523 373d8e0 fa19523 373d8e0 fa19523 373d8e0 fa19523 373d8e0 fa19523 1b5b896 fa19523 374ad1a fa19523 683524b fa19523 373d8e0 fa19523 373d8e0 fa19523 374ad1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import io
import os
import shutil
import uuid
import torch
import random
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageCms
import torch
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from pipeline_flux_control_removal import FluxControlRemovalPipeline
torch.set_grad_enabled(False)
image_path = mask_path = None
image_examples = [...]
image_path = mask_path =None
image_examples = [
[
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
],
[
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
],
[
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
],
[
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
],
[
"example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
"example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
],
[
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
],
[
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
]
]
@spaces.GPU
def load_model(base_model_path, lora_path):
global pipe
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
# enable image inputs
with torch.no_grad():
initial_input_channels = transformer.config.in_channels
new_linear = torch.nn.Linear(
transformer.x_embedder.in_features*4,
transformer.x_embedder.out_features,
bias=transformer.x_embedder.bias is not None,
dtype=transformer.dtype,
device=transformer.device,
)
new_linear.weight.zero_()
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
if transformer.x_embedder.bias is not None:
new_linear.bias.copy_(transformer.x_embedder.bias)
transformer.x_embedder = new_linear
transformer.register_to_config(in_channels=initial_input_channels*4)
pipe = FluxControlRemovalPipeline.from_pretrained(
base_model_path,
transformer=transformer,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
gr.Info(str(f"Inject LoRA: {lora_path}"))
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
return pipe
@spaces.GPU
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
@spaces.GPU
def predict(
input_image,
prompt,
ddim_steps,
seed,
scale,
image_paths,
mask_paths
):
global image_path, mask_path
gr.Info(str(f"Set seed = {seed}"))
if image_paths is not None:
input_image["background"] = load_image(image_paths).convert("RGB")
input_image["layers"][0] = load_image(mask_paths).convert("RGB")
size1, size2 = input_image["background"].convert("RGB").size
icc_profile = input_image["background"].info.get('icc_profile')
if icc_profile:
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
srgb_profile = ImageCms.createProfile("sRGB")
io_handle = io.BytesIO(icc_profile)
src_profile = ImageCms.ImageCmsProfile(io_handle)
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
input_image["background"].info.pop('icc_profile', None)
if size1 < size2:
input_image["background"] = input_image["background"].convert("RGB").resize((1024, int(size2 / size1 * 1024)))
else:
input_image["background"] = input_image["background"].convert("RGB").resize((int(size1 / size2 * 1024), 1024))
img = np.array(input_image["background"].convert("RGB"))
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
input_image["background"] = input_image["background"].resize((H, W))
input_image["layers"][0] = input_image["layers"][0].resize((H, W))
if seed == -1:
seed = random.randint(1, 2147483647)
set_seed(random.randint(1, 2147483647))
else:
set_seed(seed)
if image_paths is None:
img=input_image["layers"][0]
img_data = np.array(img)
alpha_channel = img_data[:, :, 3]
white_background = np.ones_like(alpha_channel) * 255
gray_image = white_background.copy()
gray_image[alpha_channel == 0] = 0
gray_image_pil = Image.fromarray(gray_image).convert('L')
else:
gray_image_pil = input_image["layers"][0]
if pipe is None:
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'
pipe = load_model(base_model_path, lora_path)
result = pipe(
prompt=prompt,
control_image=input_image["background"].convert("RGB"),
control_mask=gray_image_pil.convert("RGB"),
width=H,
height=W,
num_inference_steps=ddim_steps,
generator=torch.Generator("cuda").manual_seed(seed),
guidance_scale=scale,
max_sequence_length=512,
).images[0]
mask_np = np.array(input_image["layers"][0].convert("RGB"))
red = np.array(input_image["background"]).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(input_image["background"])
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
dict_out = [result]
image_path = None
mask_path = None
return dict_out, dict_res
def infer(
input_image,
ddim_steps,
seed,
scale,
removal_prompt,
):
img_path = image_path
msk_path = mask_path
return predict(input_image,
removal_prompt,
ddim_steps,
seed,
scale,
img_path,
msk_path
)
def process_example(image_paths, mask_paths):
global image_path, mask_path
image = Image.open(image_paths).convert("RGB")
mask = Image.open(mask_paths).convert("L")
black_background = Image.new("RGB", image.size, (0, 0, 0))
masked_image = Image.composite(black_background, image, mask)
image_path = image_paths
mask_path = mask_paths
return masked_image
custom_css = """
.contain { max-width: 1200px !important; }
.custom-image {
border: 2px dashed #7e22ce !important;
border-radius: 12px !important;
transition: all 0.3s ease !important;
}
.custom-image:hover {
border-color: #9333ea !important;
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
}
.btn-primary {
background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
border: none !important;
color: white !important;
border-radius: 8px !important;
}
#inline-examples {
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
padding: 16px !important;
margin-top: 8px !important;
}
#inline-examples .thumbnail {
border-radius: 8px !important;
transition: transform 0.2s ease !important;
}
#inline-examples .thumbnail:hover {
transform: scale(1.05);
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
.example-title h3 {
margin: 0 0 12px 0 !important;
color: #475569 !important;
font-size: 1.1em !important;
display: flex !important;
align-items: center !important;
}
.example-title h3::before {
content: "π";
margin-right: 8px;
font-size: 1.2em;
}
.row { align-items: stretch !important; }
.panel { height: 100%; }
"""
with gr.Blocks(
css=custom_css,
theme=gr.themes.Soft(
primary_hue="purple",
secondary_hue="purple",
font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
),
title="Omnieraser"
) as demo:
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'
#a = load_model(base_model_path=base_model_path, lora_path=lora_path)
ddim_steps = gr.Slider(visible=False, value=28)
scale = gr.Slider(visible=False, value=3.5)
seed = gr.Slider(visible=False, value=-1)
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
gr.Markdown("""
<div align="center">
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">πͺ Omnieraser</h1>
</div>
""")
with gr.Row(equal_height=False):
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## π₯ Input Panel")
with gr.Group():
input_image = gr.Sketchpad(
sources=["upload"],
type="pil",
label="Upload & Annotate",
elem_id="custom-image",
interactive=True
)
with gr.Row(variant="compact"):
run_button = gr.Button(
"π Start Processing",
variant="primary",
size="lg"
)
with gr.Group():
gr.Markdown("### βοΈ Control Parameters")
seed = gr.Slider(
label="Random Seed",
minimum=-1,
maximum=2147483647,
value=1234,
step=1,
info="-1 for random generation"
)
with gr.Column(variant="panel"):
gr.Markdown("### πΌοΈ Example Gallery", elem_classes=["example-title"])
example = gr.Examples(
examples=image_examples,
inputs=[
gr.Image(label="Image", type="filepath",visible=False),
gr.Image(label="Mask", type="filepath",visible=False)
],
outputs=[input_image],
fn=process_example,
run_on_click=True,
examples_per_page=10,
label="Click any example to load",
elem_id="inline-examples"
)
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## π€ Output Panel")
with gr.Tabs():
with gr.Tab("Final Result"):
inpaint_result = gr.Gallery(
label="Generated Image",
columns=2,
height=450,
preview=True,
object_fit="contain"
)
with gr.Tab("Visualization Steps"):
gallery = gr.Gallery(
label="Workflow Steps",
columns=2,
height=450,
object_fit="contain"
)
run_button.click(
fn=infer,
inputs=[
input_image,
ddim_steps,
seed,
scale,
removal_prompt,
],
outputs=[inpaint_result, gallery]
)
demo.launch()
|