docanalyzer / app.py
tejash300's picture
Update app.py
dd43ec8 verified
raw
history blame
32.8 kB
import os
os.environ["TRANSFORMERS_NO_FAST"] = "1" # Force use of slow tokenizers
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import io
import torch
import uvicorn
import spacy
import pdfplumber
import librosa
import soundfile as sf
import matplotlib.pyplot as plt
import numpy as np
import json
import tempfile
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
from pyngrok import ngrok
from threading import Thread
import time
import uuid
import subprocess # For running ffmpeg commands
import hashlib # For caching file results
# For asynchronous blocking calls
from starlette.concurrency import run_in_threadpool
# Gensim for topic modeling
import gensim
from gensim import corpora, models
# Spacy stop words
from spacy.lang.en.stop_words import STOP_WORDS
# Global cache for analysis results based on file hash
analysis_cache = {}
# Ensure compatibility with Google Colab
try:
from google.colab import drive
drive.mount('/content/drive')
except Exception:
pass # Not in Colab
# Make sure directories exist
os.makedirs("static", exist_ok=True)
os.makedirs("temp", exist_ok=True)
# Use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
# FastAPI setup
app = FastAPI(title="Legal Document and Video Analyzer")
# CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# In-memory storage
document_storage = {}
chat_history = []
def store_document_context(task_id, text):
document_storage[task_id] = text
return True
def load_document_context(task_id):
return document_storage.get(task_id, "")
def compute_md5(content: bytes) -> str:
return hashlib.md5(content).hexdigest()
#############################
# Fine-tuning on CUAD QA #
#############################
def fine_tune_cuad_model():
"""
Minimal stub for fine-tuning the CUAD QA model.
If you have a full fine-tuning script, place it here.
"""
from datasets import load_dataset
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
print("✅ Loading CUAD dataset for fine tuning...")
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
if "train" in dataset:
train_dataset = dataset["train"].select(range(50))
if "validation" in dataset:
val_dataset = dataset["validation"].select(range(10))
else:
split = train_dataset.train_test_split(test_size=0.2)
train_dataset = split["train"]
val_dataset = split["test"]
else:
raise ValueError("CUAD dataset does not have a train split")
print("✅ Preparing training features...")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
def prepare_train_features(examples):
tokenized_examples = tokenizer(
examples["question"],
examples["context"],
truncation="only_second",
max_length=384,
stride=128,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
offset_mapping = tokenized_examples.pop("offset_mapping")
tokenized_examples["start_positions"] = []
tokenized_examples["end_positions"] = []
for i, offsets in enumerate(offset_mapping):
input_ids = tokenized_examples["input_ids"][i]
try:
cls_index = input_ids.index(tokenizer.cls_token_id)
except ValueError:
cls_index = 0
sequence_ids = tokenized_examples.sequence_ids(i)
sample_index = sample_mapping[i]
answers = examples["answers"][sample_index]
if len(answers["answer_start"]) == 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
start_char = answers["answer_start"][0]
end_char = start_char + len(answers["text"][0])
tokenized_start_index = 0
while tokenized_start_index < len(sequence_ids) and sequence_ids[tokenized_start_index] != 1:
tokenized_start_index += 1
tokenized_end_index = len(input_ids) - 1
while tokenized_end_index >= 0 and sequence_ids[tokenized_end_index] != 1:
tokenized_end_index -= 1
if tokenized_start_index >= len(offsets) or tokenized_end_index < 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
elif not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char):
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
tokenized_start_index += 1
safe_start = tokenized_start_index - 1 if tokenized_start_index > 0 else cls_index
tokenized_examples["start_positions"].append(safe_start)
while tokenized_end_index >= 0 and offsets[tokenized_end_index][1] >= end_char:
tokenized_end_index -= 1
safe_end = tokenized_end_index + 1 if tokenized_end_index < len(offsets) - 1 else cls_index
tokenized_examples["end_positions"].append(safe_end)
return tokenized_examples
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
training_args = TrainingArguments(
output_dir="./fine_tuned_legal_qa",
max_steps=1,
evaluation_strategy="no",
learning_rate=2e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=1,
weight_decay=0.01,
logging_steps=1,
save_steps=1,
load_best_model_at_end=False,
report_to=[]
)
print("✅ Starting fine tuning on CUAD QA dataset...")
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
)
trainer.train()
print("✅ Fine tuning completed. Saving model...")
model.save_pretrained("./fine_tuned_legal_qa")
tokenizer.save_pretrained("./fine_tuned_legal_qa")
return tokenizer, model
#############################
# Load NLP Models #
#############################
try:
# Load spacy
try:
nlp = spacy.load("en_core_web_sm")
except Exception:
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("✅ Loaded spaCy model.")
# Summarizer (GPU)
summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn",
tokenizer="facebook/bart-large-cnn",
device=0 if device == "cuda" else -1
)
# QA pipeline (GPU)
qa_model = pipeline(
"question-answering",
model="deepset/roberta-base-squad2",
device=0 if device == "cuda" else -1
)
# Embeddings (GPU if available)
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
# Named Entity Recognition (GPU)
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1)
# Speech-to-text (GPU if available via device_map="auto")
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
device_map="auto" if device == "cuda" else None)
# Fine-tuned CUAD QA
if os.path.exists("fine_tuned_legal_qa"):
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
from transformers import AutoModelForQuestionAnswering
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
cuad_model.to(device)
else:
print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may be slow).")
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
cuad_model.to(device)
# Sentiment (GPU)
sentiment_pipeline = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=0 if device == "cuda" else -1
)
print("✅ All models loaded successfully.")
except Exception as e:
print(f"⚠️ Error loading models: {str(e)}")
raise RuntimeError(f"Error loading models: {str(e)}")
#############################
# Helper Functions #
#############################
def legal_chatbot(user_input, context):
global chat_history
chat_history.append({"role": "user", "content": user_input})
try:
response = qa_model(question=user_input, context=context)["answer"]
except Exception as e:
response = f"Error processing query: {e}"
chat_history.append({"role": "assistant", "content": response})
return response
def extract_text_from_pdf(pdf_file):
try:
with pdfplumber.open(pdf_file) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
return text.strip() if text else None
except Exception as e:
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
async def process_video_to_text(video_file_path):
"""
Extracts audio from video and runs speech-to-text.
"""
try:
print(f"Processing video file at {video_file_path}")
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
cmd = [
"ffmpeg", "-i", video_file_path, "-vn",
"-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
temp_audio_path, "-y"
]
await run_in_threadpool(subprocess.run, cmd, check=True)
print(f"Audio extracted to {temp_audio_path}")
result = await run_in_threadpool(speech_to_text, temp_audio_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
return transcript
except Exception as e:
print(f"Error in video processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
async def process_audio_to_text(audio_file_path):
"""
Runs speech-to-text on an audio file.
"""
try:
print(f"Processing audio file at {audio_file_path}")
result = await run_in_threadpool(speech_to_text, audio_file_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
return transcript
except Exception as e:
print(f"Error in audio processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
def extract_named_entities(text):
"""
Splits text into manageable chunks, runs spaCy for entity extraction.
"""
max_length = 10000
entities = []
for i in range(0, len(text), max_length):
chunk = text[i:i+max_length]
doc = nlp(chunk)
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
return entities
#############################
# Risk & Topic Analysis #
#############################
def analyze_sentiment(text):
sentences = [sent.text for sent in nlp(text).sents]
if not sentences:
return 0
results = sentiment_pipeline(sentences, batch_size=16)
scores = [res["score"] if res["label"] == "POSITIVE" else -res["score"] for res in results]
avg_sentiment = sum(scores) / len(scores) if scores else 0
return avg_sentiment
def analyze_topics(text, num_topics=3):
tokens = gensim.utils.simple_preprocess(text, deacc=True)
if not tokens:
return []
dictionary = corpora.Dictionary([tokens])
corpus = [dictionary.doc2bow(tokens)]
lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10)
topics = lda_model.print_topics(num_topics=num_topics)
return topics
def get_enhanced_context_info(text):
enhanced = {}
enhanced["average_sentiment"] = analyze_sentiment(text)
enhanced["topics"] = analyze_topics(text, num_topics=5)
return enhanced
def explain_topics(topics):
explanation = {}
for topic_idx, topic_str in topics:
parts = topic_str.split('+')
terms = []
for part in parts:
part = part.strip()
if '*' in part:
weight_str, word = part.split('*', 1)
word = word.strip().strip('\"').strip('\'')
try:
weight = float(weight_str)
except:
weight = 0.0
# Filter out short words & stop words
if word.lower() not in STOP_WORDS and len(word) > 1:
terms.append((weight, word))
terms.sort(key=lambda x: -x[0])
# Heuristic labeling
if terms:
if any("liability" in w.lower() for _, w in terms):
label = "Liability & Penalty Risk"
elif any("termination" in w.lower() for _, w in terms):
label = "Termination & Refund Risk"
elif any("compliance" in w.lower() for _, w in terms):
label = "Compliance & Regulatory Risk"
else:
label = "General Risk Language"
else:
label = "General Risk Language"
explanation_text = (
f"Topic {topic_idx} ({label}) is characterized by dominant terms: " +
", ".join([f"'{word}' ({weight:.3f})" for weight, word in terms[:5]])
)
explanation[topic_idx] = {
"label": label,
"explanation": explanation_text,
"terms": terms
}
return explanation
def analyze_risk_enhanced(text):
enhanced = get_enhanced_context_info(text)
avg_sentiment = enhanced["average_sentiment"]
risk_score = abs(avg_sentiment) if avg_sentiment < 0 else 0
topics_raw = enhanced["topics"]
topics_explanation = explain_topics(topics_raw)
return {
"risk_score": risk_score,
"average_sentiment": avg_sentiment,
"topics": topics_raw,
"topics_explanation": topics_explanation
}
#############################
# Clause Detection (GPU) #
#############################
def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
"""
Convert the entire text into tokens once, then create overlapping chunks
of up to `max_chunk_len` tokens with overlap `stride`.
"""
# Encode text once
encoded = tokenizer(text, add_special_tokens=False)
input_ids = encoded["input_ids"]
# We'll create overlapping windows of tokens
chunks = []
idx = 0
while idx < len(input_ids):
end = idx + max_chunk_len
sub_ids = input_ids[idx:end]
# Convert back to text
chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True)
chunks.append(chunk_text)
if end >= len(input_ids):
break
idx = end - stride
if idx < 0:
idx = 0
return chunks
def analyze_contract_clauses(text):
"""
Token-based chunking to avoid partial tokens.
Each chunk is fed into the fine-tuned CUAD model on GPU.
"""
# We'll break the text into chunks of up to 384 tokens, with a stride of 128
text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128)
try:
clause_types = list(cuad_model.config.id2label.values())
except Exception:
clause_types = [
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
]
clauses_detected = []
for chunk in text_chunks:
chunk = chunk.strip()
if not chunk:
continue
try:
# Tokenize the chunk again for the model
tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
# Check for invalid token IDs
if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size):
print("Invalid token id found; skipping chunk")
continue
with torch.no_grad():
outputs = cuad_model(**inputs)
# Force synchronization so that if there's a device error, we catch it here
if device == "cuda":
torch.cuda.synchronize()
# Shape check
if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
print("Mismatch in logits shape; skipping chunk")
continue
# For demonstration, we just apply a threshold to the start_logits
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
for idx, confidence in enumerate(predictions):
if confidence > 0.5 and idx < len(clause_types):
clauses_detected.append({
"type": clause_types[idx],
"confidence": float(confidence)
})
except Exception as e:
print(f"Error processing chunk: {e}")
# Clear GPU cache if there's an error
if device == "cuda":
torch.cuda.empty_cache()
continue
# Aggregate clauses by their highest confidence
aggregated_clauses = {}
for clause in clauses_detected:
ctype = clause["type"]
if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]:
aggregated_clauses[ctype] = clause
return list(aggregated_clauses.values())
#############################
# Endpoints #
#############################
@app.post("/analyze_legal_document")
async def analyze_legal_document(file: UploadFile = File(...)):
"""
Analyze a legal document (PDF). Extract text, summarize, detect entities,
do risk analysis, detect clauses, and store context for chat.
"""
try:
content = await file.read()
file_hash = compute_md5(content)
# Return cached result if we've already processed this file
if file_hash in analysis_cache:
return analysis_cache[file_hash]
# Extract text
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
if not text:
return {"status": "error", "message": "No valid text found in the document."}
# Summarize (handle short documents gracefully)
summary_text = text[:4096] if len(text) > 4096 else text
try:
if len(text) > 100:
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
else:
summary = "Document too short for a meaningful summary."
except Exception as e:
summary = "Summarization failed due to an error."
print(f"Summarization error: {e}")
# Extract named entities
entities = extract_named_entities(text)
# Analyze risk
risk_analysis = analyze_risk_enhanced(text)
# Detect clauses
clauses = analyze_contract_clauses(text)
# Store the document context for chatbot
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
# Cache it
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.post("/analyze_legal_video")
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
"""
Analyze a legal video: transcribe, summarize, detect entities, risk analysis, etc.
"""
try:
content = await file.read()
file_hash = compute_md5(content)
if file_hash in analysis_cache:
return analysis_cache[file_hash]
# Save video temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
temp_file.write(content)
temp_file_path = temp_file.name
# Transcribe
text = await process_video_to_text(temp_file_path)
# Cleanup
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
if not text:
return {"status": "error", "message": "No speech could be transcribed from the video."}
# Save transcript
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
with open(transcript_path, "w") as f:
f.write(text)
# Summarize
summary_text = text[:4096] if len(text) > 4096 else text
try:
if len(text) > 100:
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
else:
summary = "Transcript too short for meaningful summarization."
except Exception as e:
summary = "Summarization failed due to an error."
print(f"Summarization error: {e}")
# Entities, risk, clauses
entities = extract_named_entities(text)
risk_analysis = analyze_risk_enhanced(text)
clauses = analyze_contract_clauses(text)
# Store context
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"transcript": text,
"transcript_path": transcript_path,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.post("/analyze_legal_audio")
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
"""
Analyze an audio file: transcribe, summarize, detect entities, risk analysis, etc.
"""
try:
content = await file.read()
file_hash = compute_md5(content)
if file_hash in analysis_cache:
return analysis_cache[file_hash]
# Save audio temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
temp_file.write(content)
temp_file_path = temp_file.name
# Transcribe
text = await process_audio_to_text(temp_file_path)
# Cleanup
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
if not text:
return {"status": "error", "message": "No speech could be transcribed from the audio."}
# Save transcript
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
with open(transcript_path, "w") as f:
f.write(text)
# Summarize
summary_text = text[:4096] if len(text) > 4096 else text
try:
if len(text) > 100:
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
else:
summary = "Transcript too short for meaningful summarization."
except Exception as e:
summary = "Summarization failed due to an error."
print(f"Summarization error: {e}")
# Entities, risk, clauses
entities = extract_named_entities(text)
risk_analysis = analyze_risk_enhanced(text)
clauses = analyze_contract_clauses(text)
# Store context
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"transcript": text,
"transcript_path": transcript_path,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/transcript/{transcript_id}")
async def get_transcript(transcript_id: str):
transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
if os.path.exists(transcript_path):
return FileResponse(transcript_path)
else:
raise HTTPException(status_code=404, detail="Transcript not found")
@app.post("/legal_chatbot")
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
"""
Simple QA pipeline on the stored document context.
"""
document_context = load_document_context(task_id)
if not document_context:
return {"response": "⚠️ No relevant document found for this task ID."}
response = legal_chatbot(query, document_context)
return {"response": response, "chat_history": chat_history[-5:]}
@app.get("/health")
async def health_check():
return {
"status": "ok",
"models_loaded": True,
"device": device,
"gpu_available": torch.cuda.is_available(),
"timestamp": time.time()
}
def setup_ngrok():
try:
auth_token = os.environ.get("NGROK_AUTH_TOKEN")
if auth_token:
ngrok.set_auth_token(auth_token)
ngrok.kill()
time.sleep(1)
ngrok_tunnel = ngrok.connect(8500, "http")
public_url = ngrok_tunnel.public_url
print(f"✅ Ngrok Public URL: {public_url}")
def keep_alive():
while True:
time.sleep(60)
try:
tunnels = ngrok.get_tunnels()
if not tunnels:
print("⚠️ Ngrok tunnel closed. Reconnecting...")
ngrok_tunnel = ngrok.connect(8500, "http")
print(f"✅ Reconnected. New URL: {ngrok_tunnel.public_url}")
except Exception as e:
print(f"⚠️ Ngrok error: {e}")
Thread(target=keep_alive, daemon=True).start()
return public_url
except Exception as e:
print(f"⚠️ Ngrok setup error: {e}")
return None
# Visualization endpoints
@app.get("/download_clause_bar_chart")
async def download_clause_bar_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
clause_types = [c["type"] for c in clauses]
confidences = [c["confidence"] for c in clauses]
plt.figure(figsize=(10, 6))
plt.bar(clause_types, confidences, color='blue')
plt.xlabel("Clause Type")
plt.ylabel("Confidence Score")
plt.title("Extracted Legal Clause Confidence Scores")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
bar_chart_path = os.path.join("static", f"clause_bar_chart_{task_id}.png")
plt.savefig(bar_chart_path)
plt.close()
return FileResponse(bar_chart_path, media_type="image/png", filename=f"clause_bar_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause bar chart: {str(e)}")
@app.get("/download_clause_donut_chart")
async def download_clause_donut_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
from collections import Counter
clause_counter = Counter([c["type"] for c in clauses])
labels = list(clause_counter.keys())
sizes = list(clause_counter.values())
plt.figure(figsize=(6, 6))
wedges, texts, autotexts = plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title("Clause Type Distribution")
plt.tight_layout()
donut_chart_path = os.path.join("static", f"clause_donut_chart_{task_id}.png")
plt.savefig(donut_chart_path)
plt.close()
return FileResponse(donut_chart_path, media_type="image/png", filename=f"clause_donut_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause donut chart: {str(e)}")
@app.get("/download_clause_radar_chart")
async def download_clause_radar_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
labels = [c["type"] for c in clauses]
values = [c["confidence"] for c in clauses]
# close the loop for radar
labels += labels[:1]
values += values[:1]
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
angles += angles[:1]
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.plot(angles, values, 'o-', linewidth=2)
ax.fill(angles, values, alpha=0.25)
ax.set_thetagrids(np.degrees(angles[:-1]), labels[:-1])
ax.set_title("Legal Clause Radar Chart", y=1.1)
radar_chart_path = os.path.join("static", f"clause_radar_chart_{task_id}.png")
plt.savefig(radar_chart_path)
plt.close()
return FileResponse(radar_chart_path, media_type="image/png", filename=f"clause_radar_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause radar chart: {str(e)}")
def run():
print("Starting FastAPI server...")
uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)
if __name__ == "__main__":
public_url = setup_ngrok()
if public_url:
print(f"\n✅ Your API is publicly available at: {public_url}/docs\n")
else:
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
run()