import os os.environ["TRANSFORMERS_NO_FAST"] = "1" # Force use of slow tokenizers os.environ["CUDA_LAUNCH_BLOCKING"] = "1" import io import torch import uvicorn import spacy import pdfplumber import librosa import soundfile as sf import matplotlib.pyplot as plt import numpy as np import json import tempfile from fastapi import FastAPI, UploadFile, File, HTTPException, Form, BackgroundTasks from fastapi.responses import FileResponse, JSONResponse, HTMLResponse from fastapi.middleware.cors import CORSMiddleware from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer from sentence_transformers import SentenceTransformer from pyngrok import ngrok from threading import Thread import time import uuid import subprocess # For running ffmpeg commands import hashlib # For caching file results # For asynchronous blocking calls from starlette.concurrency import run_in_threadpool # Gensim for topic modeling import gensim from gensim import corpora, models # Spacy stop words from spacy.lang.en.stop_words import STOP_WORDS # Global cache for analysis results based on file hash analysis_cache = {} # Ensure compatibility with Google Colab try: from google.colab import drive drive.mount('/content/drive') except Exception: pass # Not in Colab # Make sure directories exist os.makedirs("static", exist_ok=True) os.makedirs("temp", exist_ok=True) # Use GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" # FastAPI setup app = FastAPI(title="Legal Document and Video Analyzer") # CORS app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # In-memory storage document_storage = {} chat_history = [] def store_document_context(task_id, text): document_storage[task_id] = text return True def load_document_context(task_id): return document_storage.get(task_id, "") def compute_md5(content: bytes) -> str: return hashlib.md5(content).hexdigest() ############################# # Fine-tuning on CUAD QA # ############################# def fine_tune_cuad_model(): """ Minimal stub for fine-tuning the CUAD QA model. If you have a full fine-tuning script, place it here. """ from datasets import load_dataset from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer print("✅ Loading CUAD dataset for fine tuning...") dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True) if "train" in dataset: train_dataset = dataset["train"].select(range(50)) if "validation" in dataset: val_dataset = dataset["validation"].select(range(10)) else: split = train_dataset.train_test_split(test_size=0.2) train_dataset = split["train"] val_dataset = split["test"] else: raise ValueError("CUAD dataset does not have a train split") print("✅ Preparing training features...") tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2") model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2") def prepare_train_features(examples): tokenized_examples = tokenizer( examples["question"], examples["context"], truncation="only_second", max_length=384, stride=128, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") offset_mapping = tokenized_examples.pop("offset_mapping") tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): input_ids = tokenized_examples["input_ids"][i] try: cls_index = input_ids.index(tokenizer.cls_token_id) except ValueError: cls_index = 0 sequence_ids = tokenized_examples.sequence_ids(i) sample_index = sample_mapping[i] answers = examples["answers"][sample_index] if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) tokenized_start_index = 0 while tokenized_start_index < len(sequence_ids) and sequence_ids[tokenized_start_index] != 1: tokenized_start_index += 1 tokenized_end_index = len(input_ids) - 1 while tokenized_end_index >= 0 and sequence_ids[tokenized_end_index] != 1: tokenized_end_index -= 1 if tokenized_start_index >= len(offsets) or tokenized_end_index < 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) elif not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char: tokenized_start_index += 1 safe_start = tokenized_start_index - 1 if tokenized_start_index > 0 else cls_index tokenized_examples["start_positions"].append(safe_start) while tokenized_end_index >= 0 and offsets[tokenized_end_index][1] >= end_char: tokenized_end_index -= 1 safe_end = tokenized_end_index + 1 if tokenized_end_index < len(offsets) - 1 else cls_index tokenized_examples["end_positions"].append(safe_end) return tokenized_examples train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names) val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names) train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"]) val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"]) training_args = TrainingArguments( output_dir="./fine_tuned_legal_qa", max_steps=1, evaluation_strategy="no", learning_rate=2e-5, per_device_train_batch_size=4, per_device_eval_batch_size=4, num_train_epochs=1, weight_decay=0.01, logging_steps=1, save_steps=1, load_best_model_at_end=False, report_to=[] ) print("✅ Starting fine tuning on CUAD QA dataset...") from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, tokenizer=tokenizer, ) trainer.train() print("✅ Fine tuning completed. Saving model...") model.save_pretrained("./fine_tuned_legal_qa") tokenizer.save_pretrained("./fine_tuned_legal_qa") return tokenizer, model ############################# # Load NLP Models # ############################# try: # Load spacy try: nlp = spacy.load("en_core_web_sm") except Exception: spacy.cli.download("en_core_web_sm") nlp = spacy.load("en_core_web_sm") print("✅ Loaded spaCy model.") # Summarizer (GPU) summarizer = pipeline( "summarization", model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn", device=0 if device == "cuda" else -1 ) # QA pipeline (GPU) qa_model = pipeline( "question-answering", model="deepset/roberta-base-squad2", device=0 if device == "cuda" else -1 ) # Embeddings (GPU if available) embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device) # Named Entity Recognition (GPU) ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1) # Speech-to-text (GPU if available via device_map="auto") speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30, device_map="auto" if device == "cuda" else None) # Fine-tuned CUAD QA if os.path.exists("fine_tuned_legal_qa"): print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...") cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa") from transformers import AutoModelForQuestionAnswering cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa") cuad_model.to(device) else: print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may be slow).") cuad_tokenizer, cuad_model = fine_tune_cuad_model() cuad_model.to(device) # Sentiment (GPU) sentiment_pipeline = pipeline( "sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=0 if device == "cuda" else -1 ) print("✅ All models loaded successfully.") except Exception as e: print(f"⚠️ Error loading models: {str(e)}") raise RuntimeError(f"Error loading models: {str(e)}") ############################# # Helper Functions # ############################# def legal_chatbot(user_input, context): global chat_history chat_history.append({"role": "user", "content": user_input}) try: response = qa_model(question=user_input, context=context)["answer"] except Exception as e: response = f"Error processing query: {e}" chat_history.append({"role": "assistant", "content": response}) return response def extract_text_from_pdf(pdf_file): try: with pdfplumber.open(pdf_file) as pdf: text = "\n".join([page.extract_text() or "" for page in pdf.pages]) return text.strip() if text else None except Exception as e: raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}") async def process_video_to_text(video_file_path): """ Extracts audio from video and runs speech-to-text. """ try: print(f"Processing video file at {video_file_path}") temp_audio_path = os.path.join("temp", "extracted_audio.wav") cmd = [ "ffmpeg", "-i", video_file_path, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2", temp_audio_path, "-y" ] await run_in_threadpool(subprocess.run, cmd, check=True) print(f"Audio extracted to {temp_audio_path}") result = await run_in_threadpool(speech_to_text, temp_audio_path) transcript = result["text"] print(f"Transcription completed: {len(transcript)} characters") if os.path.exists(temp_audio_path): os.remove(temp_audio_path) return transcript except Exception as e: print(f"Error in video processing: {str(e)}") raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}") async def process_audio_to_text(audio_file_path): """ Runs speech-to-text on an audio file. """ try: print(f"Processing audio file at {audio_file_path}") result = await run_in_threadpool(speech_to_text, audio_file_path) transcript = result["text"] print(f"Transcription completed: {len(transcript)} characters") return transcript except Exception as e: print(f"Error in audio processing: {str(e)}") raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}") def extract_named_entities(text): """ Splits text into manageable chunks, runs spaCy for entity extraction. """ max_length = 10000 entities = [] for i in range(0, len(text), max_length): chunk = text[i:i+max_length] doc = nlp(chunk) entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents]) return entities ############################# # Risk & Topic Analysis # ############################# def analyze_sentiment(text): sentences = [sent.text for sent in nlp(text).sents] if not sentences: return 0 results = sentiment_pipeline(sentences, batch_size=16) scores = [res["score"] if res["label"] == "POSITIVE" else -res["score"] for res in results] avg_sentiment = sum(scores) / len(scores) if scores else 0 return avg_sentiment def analyze_topics(text, num_topics=3): tokens = gensim.utils.simple_preprocess(text, deacc=True) if not tokens: return [] dictionary = corpora.Dictionary([tokens]) corpus = [dictionary.doc2bow(tokens)] lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10) topics = lda_model.print_topics(num_topics=num_topics) return topics def get_enhanced_context_info(text): enhanced = {} enhanced["average_sentiment"] = analyze_sentiment(text) enhanced["topics"] = analyze_topics(text, num_topics=5) return enhanced def explain_topics(topics): explanation = {} for topic_idx, topic_str in topics: parts = topic_str.split('+') terms = [] for part in parts: part = part.strip() if '*' in part: weight_str, word = part.split('*', 1) word = word.strip().strip('\"').strip('\'') try: weight = float(weight_str) except: weight = 0.0 # Filter out short words & stop words if word.lower() not in STOP_WORDS and len(word) > 1: terms.append((weight, word)) terms.sort(key=lambda x: -x[0]) # Heuristic labeling if terms: if any("liability" in w.lower() for _, w in terms): label = "Liability & Penalty Risk" elif any("termination" in w.lower() for _, w in terms): label = "Termination & Refund Risk" elif any("compliance" in w.lower() for _, w in terms): label = "Compliance & Regulatory Risk" else: label = "General Risk Language" else: label = "General Risk Language" explanation_text = ( f"Topic {topic_idx} ({label}) is characterized by dominant terms: " + ", ".join([f"'{word}' ({weight:.3f})" for weight, word in terms[:5]]) ) explanation[topic_idx] = { "label": label, "explanation": explanation_text, "terms": terms } return explanation def analyze_risk_enhanced(text): enhanced = get_enhanced_context_info(text) avg_sentiment = enhanced["average_sentiment"] risk_score = abs(avg_sentiment) if avg_sentiment < 0 else 0 topics_raw = enhanced["topics"] topics_explanation = explain_topics(topics_raw) return { "risk_score": risk_score, "average_sentiment": avg_sentiment, "topics": topics_raw, "topics_explanation": topics_explanation } ############################# # Clause Detection (GPU) # ############################# def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128): """ Convert the entire text into tokens once, then create overlapping chunks of up to `max_chunk_len` tokens with overlap `stride`. """ # Encode text once encoded = tokenizer(text, add_special_tokens=False) input_ids = encoded["input_ids"] # We'll create overlapping windows of tokens chunks = [] idx = 0 while idx < len(input_ids): end = idx + max_chunk_len sub_ids = input_ids[idx:end] # Convert back to text chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True) chunks.append(chunk_text) if end >= len(input_ids): break idx = end - stride if idx < 0: idx = 0 return chunks def analyze_contract_clauses(text): """ Token-based chunking to avoid partial tokens. Each chunk is fed into the fine-tuned CUAD model on GPU. """ # We'll break the text into chunks of up to 384 tokens, with a stride of 128 text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128) try: clause_types = list(cuad_model.config.id2label.values()) except Exception: clause_types = [ "Obligations of Seller", "Governing Law", "Termination", "Indemnification", "Confidentiality", "Insurance", "Non-Compete", "Change of Control", "Assignment", "Warranty", "Limitation of Liability", "Arbitration", "IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights" ] clauses_detected = [] for chunk in text_chunks: chunk = chunk.strip() if not chunk: continue try: # Tokenize the chunk again for the model tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512) inputs = {k: v.to(device) for k, v in tokenized_inputs.items()} # Check for invalid token IDs if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size): print("Invalid token id found; skipping chunk") continue with torch.no_grad(): outputs = cuad_model(**inputs) # Force synchronization so that if there's a device error, we catch it here if device == "cuda": torch.cuda.synchronize() # Shape check if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]: print("Mismatch in logits shape; skipping chunk") continue # For demonstration, we just apply a threshold to the start_logits predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0] for idx, confidence in enumerate(predictions): if confidence > 0.5 and idx < len(clause_types): clauses_detected.append({ "type": clause_types[idx], "confidence": float(confidence) }) except Exception as e: print(f"Error processing chunk: {e}") # Clear GPU cache if there's an error if device == "cuda": torch.cuda.empty_cache() continue # Aggregate clauses by their highest confidence aggregated_clauses = {} for clause in clauses_detected: ctype = clause["type"] if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]: aggregated_clauses[ctype] = clause return list(aggregated_clauses.values()) ############################# # Endpoints # ############################# @app.post("/analyze_legal_document") async def analyze_legal_document(file: UploadFile = File(...)): """ Analyze a legal document (PDF). Extract text, summarize, detect entities, do risk analysis, detect clauses, and store context for chat. """ try: content = await file.read() file_hash = compute_md5(content) # Return cached result if we've already processed this file if file_hash in analysis_cache: return analysis_cache[file_hash] # Extract text text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content)) if not text: return {"status": "error", "message": "No valid text found in the document."} # Summarize (handle short documents gracefully) summary_text = text[:4096] if len(text) > 4096 else text try: if len(text) > 100: summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] else: summary = "Document too short for a meaningful summary." except Exception as e: summary = "Summarization failed due to an error." print(f"Summarization error: {e}") # Extract named entities entities = extract_named_entities(text) # Analyze risk risk_analysis = analyze_risk_enhanced(text) # Detect clauses clauses = analyze_contract_clauses(text) # Store the document context for chatbot generated_task_id = str(uuid.uuid4()) store_document_context(generated_task_id, text) result = { "status": "success", "task_id": generated_task_id, "summary": summary, "named_entities": entities, "risk_analysis": risk_analysis, "clauses_detected": clauses } # Cache it analysis_cache[file_hash] = result return result except Exception as e: return {"status": "error", "message": str(e)} @app.post("/analyze_legal_video") async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None): """ Analyze a legal video: transcribe, summarize, detect entities, risk analysis, etc. """ try: content = await file.read() file_hash = compute_md5(content) if file_hash in analysis_cache: return analysis_cache[file_hash] # Save video temporarily with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file: temp_file.write(content) temp_file_path = temp_file.name # Transcribe text = await process_video_to_text(temp_file_path) # Cleanup if os.path.exists(temp_file_path): os.remove(temp_file_path) if not text: return {"status": "error", "message": "No speech could be transcribed from the video."} # Save transcript transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt") with open(transcript_path, "w") as f: f.write(text) # Summarize summary_text = text[:4096] if len(text) > 4096 else text try: if len(text) > 100: summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] else: summary = "Transcript too short for meaningful summarization." except Exception as e: summary = "Summarization failed due to an error." print(f"Summarization error: {e}") # Entities, risk, clauses entities = extract_named_entities(text) risk_analysis = analyze_risk_enhanced(text) clauses = analyze_contract_clauses(text) # Store context generated_task_id = str(uuid.uuid4()) store_document_context(generated_task_id, text) result = { "status": "success", "task_id": generated_task_id, "transcript": text, "transcript_path": transcript_path, "summary": summary, "named_entities": entities, "risk_analysis": risk_analysis, "clauses_detected": clauses } analysis_cache[file_hash] = result return result except Exception as e: return {"status": "error", "message": str(e)} @app.post("/analyze_legal_audio") async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None): """ Analyze an audio file: transcribe, summarize, detect entities, risk analysis, etc. """ try: content = await file.read() file_hash = compute_md5(content) if file_hash in analysis_cache: return analysis_cache[file_hash] # Save audio temporarily with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file: temp_file.write(content) temp_file_path = temp_file.name # Transcribe text = await process_audio_to_text(temp_file_path) # Cleanup if os.path.exists(temp_file_path): os.remove(temp_file_path) if not text: return {"status": "error", "message": "No speech could be transcribed from the audio."} # Save transcript transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt") with open(transcript_path, "w") as f: f.write(text) # Summarize summary_text = text[:4096] if len(text) > 4096 else text try: if len(text) > 100: summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] else: summary = "Transcript too short for meaningful summarization." except Exception as e: summary = "Summarization failed due to an error." print(f"Summarization error: {e}") # Entities, risk, clauses entities = extract_named_entities(text) risk_analysis = analyze_risk_enhanced(text) clauses = analyze_contract_clauses(text) # Store context generated_task_id = str(uuid.uuid4()) store_document_context(generated_task_id, text) result = { "status": "success", "task_id": generated_task_id, "transcript": text, "transcript_path": transcript_path, "summary": summary, "named_entities": entities, "risk_analysis": risk_analysis, "clauses_detected": clauses } analysis_cache[file_hash] = result return result except Exception as e: return {"status": "error", "message": str(e)} @app.get("/transcript/{transcript_id}") async def get_transcript(transcript_id: str): transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt") if os.path.exists(transcript_path): return FileResponse(transcript_path) else: raise HTTPException(status_code=404, detail="Transcript not found") @app.post("/legal_chatbot") async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)): """ Simple QA pipeline on the stored document context. """ document_context = load_document_context(task_id) if not document_context: return {"response": "⚠️ No relevant document found for this task ID."} response = legal_chatbot(query, document_context) return {"response": response, "chat_history": chat_history[-5:]} @app.get("/health") async def health_check(): return { "status": "ok", "models_loaded": True, "device": device, "gpu_available": torch.cuda.is_available(), "timestamp": time.time() } def setup_ngrok(): try: auth_token = os.environ.get("NGROK_AUTH_TOKEN") if auth_token: ngrok.set_auth_token(auth_token) ngrok.kill() time.sleep(1) ngrok_tunnel = ngrok.connect(8500, "http") public_url = ngrok_tunnel.public_url print(f"✅ Ngrok Public URL: {public_url}") def keep_alive(): while True: time.sleep(60) try: tunnels = ngrok.get_tunnels() if not tunnels: print("⚠️ Ngrok tunnel closed. Reconnecting...") ngrok_tunnel = ngrok.connect(8500, "http") print(f"✅ Reconnected. New URL: {ngrok_tunnel.public_url}") except Exception as e: print(f"⚠️ Ngrok error: {e}") Thread(target=keep_alive, daemon=True).start() return public_url except Exception as e: print(f"⚠️ Ngrok setup error: {e}") return None # Visualization endpoints @app.get("/download_clause_bar_chart") async def download_clause_bar_chart(task_id: str): try: text = load_document_context(task_id) if not text: raise HTTPException(status_code=404, detail="Document context not found") clauses = analyze_contract_clauses(text) if not clauses: raise HTTPException(status_code=404, detail="No clauses detected.") clause_types = [c["type"] for c in clauses] confidences = [c["confidence"] for c in clauses] plt.figure(figsize=(10, 6)) plt.bar(clause_types, confidences, color='blue') plt.xlabel("Clause Type") plt.ylabel("Confidence Score") plt.title("Extracted Legal Clause Confidence Scores") plt.xticks(rotation=45, ha="right") plt.tight_layout() bar_chart_path = os.path.join("static", f"clause_bar_chart_{task_id}.png") plt.savefig(bar_chart_path) plt.close() return FileResponse(bar_chart_path, media_type="image/png", filename=f"clause_bar_chart_{task_id}.png") except Exception as e: raise HTTPException(status_code=500, detail=f"Error generating clause bar chart: {str(e)}") @app.get("/download_clause_donut_chart") async def download_clause_donut_chart(task_id: str): try: text = load_document_context(task_id) if not text: raise HTTPException(status_code=404, detail="Document context not found") clauses = analyze_contract_clauses(text) if not clauses: raise HTTPException(status_code=404, detail="No clauses detected.") from collections import Counter clause_counter = Counter([c["type"] for c in clauses]) labels = list(clause_counter.keys()) sizes = list(clause_counter.values()) plt.figure(figsize=(6, 6)) wedges, texts, autotexts = plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90) centre_circle = plt.Circle((0, 0), 0.70, fc='white') fig = plt.gcf() fig.gca().add_artist(centre_circle) plt.title("Clause Type Distribution") plt.tight_layout() donut_chart_path = os.path.join("static", f"clause_donut_chart_{task_id}.png") plt.savefig(donut_chart_path) plt.close() return FileResponse(donut_chart_path, media_type="image/png", filename=f"clause_donut_chart_{task_id}.png") except Exception as e: raise HTTPException(status_code=500, detail=f"Error generating clause donut chart: {str(e)}") @app.get("/download_clause_radar_chart") async def download_clause_radar_chart(task_id: str): try: text = load_document_context(task_id) if not text: raise HTTPException(status_code=404, detail="Document context not found") clauses = analyze_contract_clauses(text) if not clauses: raise HTTPException(status_code=404, detail="No clauses detected.") labels = [c["type"] for c in clauses] values = [c["confidence"] for c in clauses] # close the loop for radar labels += labels[:1] values += values[:1] angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist() angles += angles[:1] fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True)) ax.plot(angles, values, 'o-', linewidth=2) ax.fill(angles, values, alpha=0.25) ax.set_thetagrids(np.degrees(angles[:-1]), labels[:-1]) ax.set_title("Legal Clause Radar Chart", y=1.1) radar_chart_path = os.path.join("static", f"clause_radar_chart_{task_id}.png") plt.savefig(radar_chart_path) plt.close() return FileResponse(radar_chart_path, media_type="image/png", filename=f"clause_radar_chart_{task_id}.png") except Exception as e: raise HTTPException(status_code=500, detail=f"Error generating clause radar chart: {str(e)}") def run(): print("Starting FastAPI server...") uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600) if __name__ == "__main__": public_url = setup_ngrok() if public_url: print(f"\n✅ Your API is publicly available at: {public_url}/docs\n") else: print("\n⚠️ Ngrok setup failed. API will only be available locally.\n") run()