Spaces:
Runtime error
Runtime error
File size: 32,757 Bytes
2d967e5 b6de26f d951253 2d967e5 08be412 6bbd6b4 2d967e5 b6de26f 08be412 dd43ec8 08be412 dd43ec8 6bbd6b4 08be412 2d967e5 64af888 2d967e5 64af888 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 64af888 2d967e5 08be412 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 c575db1 2d967e5 c575db1 2d967e5 f0cbc9e 2d967e5 f0cbc9e 2d967e5 f0cbc9e 2d967e5 f0cbc9e 2d967e5 f0cbc9e 2d967e5 f0cbc9e 2d967e5 08be412 2d967e5 c575db1 64af888 2d967e5 64af888 d629e1d 08be412 2d967e5 a94f8aa 2d967e5 dd43ec8 2d967e5 d629e1d 2d967e5 dd43ec8 43255fa dd43ec8 c4965c8 6bbd6b4 dd43ec8 c4965c8 08be412 dd43ec8 2d967e5 dd43ec8 b6de26f dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 08be412 2d967e5 dd43ec8 2d967e5 08be412 dd43ec8 2d967e5 21289a5 08be412 2d967e5 08be412 2d967e5 08be412 dd43ec8 2d967e5 08be412 2d967e5 dd43ec8 2d967e5 dd43ec8 08be412 6bbd6b4 dd43ec8 6bbd6b4 dd43ec8 6bbd6b4 dd43ec8 6bbd6b4 dd43ec8 6bbd6b4 dd43ec8 6bbd6b4 dd43ec8 6bbd6b4 08be412 6bbd6b4 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 08be412 2d967e5 dd43ec8 4e897df dd43ec8 4e897df dd43ec8 4e897df dd43ec8 4e897df dd43ec8 4e897df dd43ec8 4e897df dd43ec8 4e897df dd43ec8 4e897df dd43ec8 4e897df dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 08be412 2d967e5 dd43ec8 2d967e5 08be412 dd43ec8 08be412 dd43ec8 08be412 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 08be412 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 08be412 2d967e5 08be412 2d967e5 dd43ec8 08be412 dd43ec8 2d967e5 08be412 dd43ec8 2d967e5 08be412 dd43ec8 2d967e5 dd43ec8 08be412 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 08be412 2d967e5 dd43ec8 2d967e5 dd43ec8 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 dd43ec8 2d967e5 08be412 dd43ec8 2d967e5 dd43ec8 f0cbc9e dd43ec8 a94f8aa 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 dd43ec8 2d967e5 08be412 2d967e5 dd43ec8 2d967e5 dd43ec8 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 dd43ec8 2d967e5 dd43ec8 43255fa 2d967e5 08be412 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 08be412 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 08be412 43255fa dd43ec8 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 947634e dd43ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
import os
os.environ["TRANSFORMERS_NO_FAST"] = "1" # Force use of slow tokenizers
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import io
import torch
import uvicorn
import spacy
import pdfplumber
import librosa
import soundfile as sf
import matplotlib.pyplot as plt
import numpy as np
import json
import tempfile
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
from pyngrok import ngrok
from threading import Thread
import time
import uuid
import subprocess # For running ffmpeg commands
import hashlib # For caching file results
# For asynchronous blocking calls
from starlette.concurrency import run_in_threadpool
# Gensim for topic modeling
import gensim
from gensim import corpora, models
# Spacy stop words
from spacy.lang.en.stop_words import STOP_WORDS
# Global cache for analysis results based on file hash
analysis_cache = {}
# Ensure compatibility with Google Colab
try:
from google.colab import drive
drive.mount('/content/drive')
except Exception:
pass # Not in Colab
# Make sure directories exist
os.makedirs("static", exist_ok=True)
os.makedirs("temp", exist_ok=True)
# Use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
# FastAPI setup
app = FastAPI(title="Legal Document and Video Analyzer")
# CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# In-memory storage
document_storage = {}
chat_history = []
def store_document_context(task_id, text):
document_storage[task_id] = text
return True
def load_document_context(task_id):
return document_storage.get(task_id, "")
def compute_md5(content: bytes) -> str:
return hashlib.md5(content).hexdigest()
#############################
# Fine-tuning on CUAD QA #
#############################
def fine_tune_cuad_model():
"""
Minimal stub for fine-tuning the CUAD QA model.
If you have a full fine-tuning script, place it here.
"""
from datasets import load_dataset
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
print("✅ Loading CUAD dataset for fine tuning...")
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
if "train" in dataset:
train_dataset = dataset["train"].select(range(50))
if "validation" in dataset:
val_dataset = dataset["validation"].select(range(10))
else:
split = train_dataset.train_test_split(test_size=0.2)
train_dataset = split["train"]
val_dataset = split["test"]
else:
raise ValueError("CUAD dataset does not have a train split")
print("✅ Preparing training features...")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
def prepare_train_features(examples):
tokenized_examples = tokenizer(
examples["question"],
examples["context"],
truncation="only_second",
max_length=384,
stride=128,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
offset_mapping = tokenized_examples.pop("offset_mapping")
tokenized_examples["start_positions"] = []
tokenized_examples["end_positions"] = []
for i, offsets in enumerate(offset_mapping):
input_ids = tokenized_examples["input_ids"][i]
try:
cls_index = input_ids.index(tokenizer.cls_token_id)
except ValueError:
cls_index = 0
sequence_ids = tokenized_examples.sequence_ids(i)
sample_index = sample_mapping[i]
answers = examples["answers"][sample_index]
if len(answers["answer_start"]) == 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
start_char = answers["answer_start"][0]
end_char = start_char + len(answers["text"][0])
tokenized_start_index = 0
while tokenized_start_index < len(sequence_ids) and sequence_ids[tokenized_start_index] != 1:
tokenized_start_index += 1
tokenized_end_index = len(input_ids) - 1
while tokenized_end_index >= 0 and sequence_ids[tokenized_end_index] != 1:
tokenized_end_index -= 1
if tokenized_start_index >= len(offsets) or tokenized_end_index < 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
elif not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char):
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
tokenized_start_index += 1
safe_start = tokenized_start_index - 1 if tokenized_start_index > 0 else cls_index
tokenized_examples["start_positions"].append(safe_start)
while tokenized_end_index >= 0 and offsets[tokenized_end_index][1] >= end_char:
tokenized_end_index -= 1
safe_end = tokenized_end_index + 1 if tokenized_end_index < len(offsets) - 1 else cls_index
tokenized_examples["end_positions"].append(safe_end)
return tokenized_examples
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
training_args = TrainingArguments(
output_dir="./fine_tuned_legal_qa",
max_steps=1,
evaluation_strategy="no",
learning_rate=2e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=1,
weight_decay=0.01,
logging_steps=1,
save_steps=1,
load_best_model_at_end=False,
report_to=[]
)
print("✅ Starting fine tuning on CUAD QA dataset...")
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
)
trainer.train()
print("✅ Fine tuning completed. Saving model...")
model.save_pretrained("./fine_tuned_legal_qa")
tokenizer.save_pretrained("./fine_tuned_legal_qa")
return tokenizer, model
#############################
# Load NLP Models #
#############################
try:
# Load spacy
try:
nlp = spacy.load("en_core_web_sm")
except Exception:
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("✅ Loaded spaCy model.")
# Summarizer (GPU)
summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn",
tokenizer="facebook/bart-large-cnn",
device=0 if device == "cuda" else -1
)
# QA pipeline (GPU)
qa_model = pipeline(
"question-answering",
model="deepset/roberta-base-squad2",
device=0 if device == "cuda" else -1
)
# Embeddings (GPU if available)
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
# Named Entity Recognition (GPU)
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1)
# Speech-to-text (GPU if available via device_map="auto")
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
device_map="auto" if device == "cuda" else None)
# Fine-tuned CUAD QA
if os.path.exists("fine_tuned_legal_qa"):
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
from transformers import AutoModelForQuestionAnswering
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
cuad_model.to(device)
else:
print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may be slow).")
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
cuad_model.to(device)
# Sentiment (GPU)
sentiment_pipeline = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=0 if device == "cuda" else -1
)
print("✅ All models loaded successfully.")
except Exception as e:
print(f"⚠️ Error loading models: {str(e)}")
raise RuntimeError(f"Error loading models: {str(e)}")
#############################
# Helper Functions #
#############################
def legal_chatbot(user_input, context):
global chat_history
chat_history.append({"role": "user", "content": user_input})
try:
response = qa_model(question=user_input, context=context)["answer"]
except Exception as e:
response = f"Error processing query: {e}"
chat_history.append({"role": "assistant", "content": response})
return response
def extract_text_from_pdf(pdf_file):
try:
with pdfplumber.open(pdf_file) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
return text.strip() if text else None
except Exception as e:
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
async def process_video_to_text(video_file_path):
"""
Extracts audio from video and runs speech-to-text.
"""
try:
print(f"Processing video file at {video_file_path}")
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
cmd = [
"ffmpeg", "-i", video_file_path, "-vn",
"-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
temp_audio_path, "-y"
]
await run_in_threadpool(subprocess.run, cmd, check=True)
print(f"Audio extracted to {temp_audio_path}")
result = await run_in_threadpool(speech_to_text, temp_audio_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
return transcript
except Exception as e:
print(f"Error in video processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
async def process_audio_to_text(audio_file_path):
"""
Runs speech-to-text on an audio file.
"""
try:
print(f"Processing audio file at {audio_file_path}")
result = await run_in_threadpool(speech_to_text, audio_file_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
return transcript
except Exception as e:
print(f"Error in audio processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
def extract_named_entities(text):
"""
Splits text into manageable chunks, runs spaCy for entity extraction.
"""
max_length = 10000
entities = []
for i in range(0, len(text), max_length):
chunk = text[i:i+max_length]
doc = nlp(chunk)
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
return entities
#############################
# Risk & Topic Analysis #
#############################
def analyze_sentiment(text):
sentences = [sent.text for sent in nlp(text).sents]
if not sentences:
return 0
results = sentiment_pipeline(sentences, batch_size=16)
scores = [res["score"] if res["label"] == "POSITIVE" else -res["score"] for res in results]
avg_sentiment = sum(scores) / len(scores) if scores else 0
return avg_sentiment
def analyze_topics(text, num_topics=3):
tokens = gensim.utils.simple_preprocess(text, deacc=True)
if not tokens:
return []
dictionary = corpora.Dictionary([tokens])
corpus = [dictionary.doc2bow(tokens)]
lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10)
topics = lda_model.print_topics(num_topics=num_topics)
return topics
def get_enhanced_context_info(text):
enhanced = {}
enhanced["average_sentiment"] = analyze_sentiment(text)
enhanced["topics"] = analyze_topics(text, num_topics=5)
return enhanced
def explain_topics(topics):
explanation = {}
for topic_idx, topic_str in topics:
parts = topic_str.split('+')
terms = []
for part in parts:
part = part.strip()
if '*' in part:
weight_str, word = part.split('*', 1)
word = word.strip().strip('\"').strip('\'')
try:
weight = float(weight_str)
except:
weight = 0.0
# Filter out short words & stop words
if word.lower() not in STOP_WORDS and len(word) > 1:
terms.append((weight, word))
terms.sort(key=lambda x: -x[0])
# Heuristic labeling
if terms:
if any("liability" in w.lower() for _, w in terms):
label = "Liability & Penalty Risk"
elif any("termination" in w.lower() for _, w in terms):
label = "Termination & Refund Risk"
elif any("compliance" in w.lower() for _, w in terms):
label = "Compliance & Regulatory Risk"
else:
label = "General Risk Language"
else:
label = "General Risk Language"
explanation_text = (
f"Topic {topic_idx} ({label}) is characterized by dominant terms: " +
", ".join([f"'{word}' ({weight:.3f})" for weight, word in terms[:5]])
)
explanation[topic_idx] = {
"label": label,
"explanation": explanation_text,
"terms": terms
}
return explanation
def analyze_risk_enhanced(text):
enhanced = get_enhanced_context_info(text)
avg_sentiment = enhanced["average_sentiment"]
risk_score = abs(avg_sentiment) if avg_sentiment < 0 else 0
topics_raw = enhanced["topics"]
topics_explanation = explain_topics(topics_raw)
return {
"risk_score": risk_score,
"average_sentiment": avg_sentiment,
"topics": topics_raw,
"topics_explanation": topics_explanation
}
#############################
# Clause Detection (GPU) #
#############################
def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
"""
Convert the entire text into tokens once, then create overlapping chunks
of up to `max_chunk_len` tokens with overlap `stride`.
"""
# Encode text once
encoded = tokenizer(text, add_special_tokens=False)
input_ids = encoded["input_ids"]
# We'll create overlapping windows of tokens
chunks = []
idx = 0
while idx < len(input_ids):
end = idx + max_chunk_len
sub_ids = input_ids[idx:end]
# Convert back to text
chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True)
chunks.append(chunk_text)
if end >= len(input_ids):
break
idx = end - stride
if idx < 0:
idx = 0
return chunks
def analyze_contract_clauses(text):
"""
Token-based chunking to avoid partial tokens.
Each chunk is fed into the fine-tuned CUAD model on GPU.
"""
# We'll break the text into chunks of up to 384 tokens, with a stride of 128
text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128)
try:
clause_types = list(cuad_model.config.id2label.values())
except Exception:
clause_types = [
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
]
clauses_detected = []
for chunk in text_chunks:
chunk = chunk.strip()
if not chunk:
continue
try:
# Tokenize the chunk again for the model
tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
# Check for invalid token IDs
if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size):
print("Invalid token id found; skipping chunk")
continue
with torch.no_grad():
outputs = cuad_model(**inputs)
# Force synchronization so that if there's a device error, we catch it here
if device == "cuda":
torch.cuda.synchronize()
# Shape check
if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
print("Mismatch in logits shape; skipping chunk")
continue
# For demonstration, we just apply a threshold to the start_logits
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
for idx, confidence in enumerate(predictions):
if confidence > 0.5 and idx < len(clause_types):
clauses_detected.append({
"type": clause_types[idx],
"confidence": float(confidence)
})
except Exception as e:
print(f"Error processing chunk: {e}")
# Clear GPU cache if there's an error
if device == "cuda":
torch.cuda.empty_cache()
continue
# Aggregate clauses by their highest confidence
aggregated_clauses = {}
for clause in clauses_detected:
ctype = clause["type"]
if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]:
aggregated_clauses[ctype] = clause
return list(aggregated_clauses.values())
#############################
# Endpoints #
#############################
@app.post("/analyze_legal_document")
async def analyze_legal_document(file: UploadFile = File(...)):
"""
Analyze a legal document (PDF). Extract text, summarize, detect entities,
do risk analysis, detect clauses, and store context for chat.
"""
try:
content = await file.read()
file_hash = compute_md5(content)
# Return cached result if we've already processed this file
if file_hash in analysis_cache:
return analysis_cache[file_hash]
# Extract text
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
if not text:
return {"status": "error", "message": "No valid text found in the document."}
# Summarize (handle short documents gracefully)
summary_text = text[:4096] if len(text) > 4096 else text
try:
if len(text) > 100:
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
else:
summary = "Document too short for a meaningful summary."
except Exception as e:
summary = "Summarization failed due to an error."
print(f"Summarization error: {e}")
# Extract named entities
entities = extract_named_entities(text)
# Analyze risk
risk_analysis = analyze_risk_enhanced(text)
# Detect clauses
clauses = analyze_contract_clauses(text)
# Store the document context for chatbot
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
# Cache it
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.post("/analyze_legal_video")
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
"""
Analyze a legal video: transcribe, summarize, detect entities, risk analysis, etc.
"""
try:
content = await file.read()
file_hash = compute_md5(content)
if file_hash in analysis_cache:
return analysis_cache[file_hash]
# Save video temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
temp_file.write(content)
temp_file_path = temp_file.name
# Transcribe
text = await process_video_to_text(temp_file_path)
# Cleanup
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
if not text:
return {"status": "error", "message": "No speech could be transcribed from the video."}
# Save transcript
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
with open(transcript_path, "w") as f:
f.write(text)
# Summarize
summary_text = text[:4096] if len(text) > 4096 else text
try:
if len(text) > 100:
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
else:
summary = "Transcript too short for meaningful summarization."
except Exception as e:
summary = "Summarization failed due to an error."
print(f"Summarization error: {e}")
# Entities, risk, clauses
entities = extract_named_entities(text)
risk_analysis = analyze_risk_enhanced(text)
clauses = analyze_contract_clauses(text)
# Store context
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"transcript": text,
"transcript_path": transcript_path,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.post("/analyze_legal_audio")
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
"""
Analyze an audio file: transcribe, summarize, detect entities, risk analysis, etc.
"""
try:
content = await file.read()
file_hash = compute_md5(content)
if file_hash in analysis_cache:
return analysis_cache[file_hash]
# Save audio temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
temp_file.write(content)
temp_file_path = temp_file.name
# Transcribe
text = await process_audio_to_text(temp_file_path)
# Cleanup
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
if not text:
return {"status": "error", "message": "No speech could be transcribed from the audio."}
# Save transcript
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
with open(transcript_path, "w") as f:
f.write(text)
# Summarize
summary_text = text[:4096] if len(text) > 4096 else text
try:
if len(text) > 100:
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
else:
summary = "Transcript too short for meaningful summarization."
except Exception as e:
summary = "Summarization failed due to an error."
print(f"Summarization error: {e}")
# Entities, risk, clauses
entities = extract_named_entities(text)
risk_analysis = analyze_risk_enhanced(text)
clauses = analyze_contract_clauses(text)
# Store context
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"transcript": text,
"transcript_path": transcript_path,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/transcript/{transcript_id}")
async def get_transcript(transcript_id: str):
transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
if os.path.exists(transcript_path):
return FileResponse(transcript_path)
else:
raise HTTPException(status_code=404, detail="Transcript not found")
@app.post("/legal_chatbot")
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
"""
Simple QA pipeline on the stored document context.
"""
document_context = load_document_context(task_id)
if not document_context:
return {"response": "⚠️ No relevant document found for this task ID."}
response = legal_chatbot(query, document_context)
return {"response": response, "chat_history": chat_history[-5:]}
@app.get("/health")
async def health_check():
return {
"status": "ok",
"models_loaded": True,
"device": device,
"gpu_available": torch.cuda.is_available(),
"timestamp": time.time()
}
def setup_ngrok():
try:
auth_token = os.environ.get("NGROK_AUTH_TOKEN")
if auth_token:
ngrok.set_auth_token(auth_token)
ngrok.kill()
time.sleep(1)
ngrok_tunnel = ngrok.connect(8500, "http")
public_url = ngrok_tunnel.public_url
print(f"✅ Ngrok Public URL: {public_url}")
def keep_alive():
while True:
time.sleep(60)
try:
tunnels = ngrok.get_tunnels()
if not tunnels:
print("⚠️ Ngrok tunnel closed. Reconnecting...")
ngrok_tunnel = ngrok.connect(8500, "http")
print(f"✅ Reconnected. New URL: {ngrok_tunnel.public_url}")
except Exception as e:
print(f"⚠️ Ngrok error: {e}")
Thread(target=keep_alive, daemon=True).start()
return public_url
except Exception as e:
print(f"⚠️ Ngrok setup error: {e}")
return None
# Visualization endpoints
@app.get("/download_clause_bar_chart")
async def download_clause_bar_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
clause_types = [c["type"] for c in clauses]
confidences = [c["confidence"] for c in clauses]
plt.figure(figsize=(10, 6))
plt.bar(clause_types, confidences, color='blue')
plt.xlabel("Clause Type")
plt.ylabel("Confidence Score")
plt.title("Extracted Legal Clause Confidence Scores")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
bar_chart_path = os.path.join("static", f"clause_bar_chart_{task_id}.png")
plt.savefig(bar_chart_path)
plt.close()
return FileResponse(bar_chart_path, media_type="image/png", filename=f"clause_bar_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause bar chart: {str(e)}")
@app.get("/download_clause_donut_chart")
async def download_clause_donut_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
from collections import Counter
clause_counter = Counter([c["type"] for c in clauses])
labels = list(clause_counter.keys())
sizes = list(clause_counter.values())
plt.figure(figsize=(6, 6))
wedges, texts, autotexts = plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title("Clause Type Distribution")
plt.tight_layout()
donut_chart_path = os.path.join("static", f"clause_donut_chart_{task_id}.png")
plt.savefig(donut_chart_path)
plt.close()
return FileResponse(donut_chart_path, media_type="image/png", filename=f"clause_donut_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause donut chart: {str(e)}")
@app.get("/download_clause_radar_chart")
async def download_clause_radar_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
labels = [c["type"] for c in clauses]
values = [c["confidence"] for c in clauses]
# close the loop for radar
labels += labels[:1]
values += values[:1]
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
angles += angles[:1]
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.plot(angles, values, 'o-', linewidth=2)
ax.fill(angles, values, alpha=0.25)
ax.set_thetagrids(np.degrees(angles[:-1]), labels[:-1])
ax.set_title("Legal Clause Radar Chart", y=1.1)
radar_chart_path = os.path.join("static", f"clause_radar_chart_{task_id}.png")
plt.savefig(radar_chart_path)
plt.close()
return FileResponse(radar_chart_path, media_type="image/png", filename=f"clause_radar_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause radar chart: {str(e)}")
def run():
print("Starting FastAPI server...")
uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)
if __name__ == "__main__":
public_url = setup_ngrok()
if public_url:
print(f"\n✅ Your API is publicly available at: {public_url}/docs\n")
else:
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
run()
|