Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
|
|
12 |
import numpy as np
|
13 |
import json
|
14 |
import tempfile
|
15 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
|
16 |
from fastapi.responses import FileResponse, JSONResponse
|
17 |
from fastapi.middleware.cors import CORSMiddleware
|
18 |
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
@@ -22,6 +22,17 @@ from threading import Thread
|
|
22 |
import time
|
23 |
import uuid
|
24 |
import subprocess # For running ffmpeg commands
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Ensure compatibility with Google Colab
|
27 |
try:
|
@@ -49,7 +60,7 @@ app.add_middleware(
|
|
49 |
allow_headers=["*"],
|
50 |
)
|
51 |
|
52 |
-
#
|
53 |
document_storage = {}
|
54 |
chat_history = []
|
55 |
|
@@ -62,16 +73,15 @@ def store_document_context(task_id, text):
|
|
62 |
def load_document_context(task_id):
|
63 |
return document_storage.get(task_id, "")
|
64 |
|
|
|
|
|
|
|
|
|
65 |
#############################
|
66 |
# Fine-tuning on CUAD QA #
|
67 |
#############################
|
68 |
|
69 |
def fine_tune_cuad_model():
|
70 |
-
"""
|
71 |
-
Fine tunes a QA model on the CUAD dataset for clause extraction.
|
72 |
-
For testing, we use only 50 training examples (and 10 for validation)
|
73 |
-
and restrict training to 1 step with evaluation disabled.
|
74 |
-
"""
|
75 |
from datasets import load_dataset
|
76 |
import numpy as np
|
77 |
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering
|
@@ -80,10 +90,8 @@ def fine_tune_cuad_model():
|
|
80 |
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
|
81 |
|
82 |
if "train" in dataset:
|
83 |
-
# Use only 50 examples for training
|
84 |
train_dataset = dataset["train"].select(range(50))
|
85 |
if "validation" in dataset:
|
86 |
-
# Use 10 examples for validation
|
87 |
val_dataset = dataset["validation"].select(range(10))
|
88 |
else:
|
89 |
split = train_dataset.train_test_split(test_size=0.2)
|
@@ -93,7 +101,6 @@ def fine_tune_cuad_model():
|
|
93 |
raise ValueError("CUAD dataset does not have a train split")
|
94 |
|
95 |
print("✅ Preparing training features...")
|
96 |
-
|
97 |
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
98 |
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
99 |
|
@@ -145,15 +152,13 @@ def fine_tune_cuad_model():
|
|
145 |
print("✅ Tokenizing dataset...")
|
146 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
147 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
148 |
-
|
149 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
150 |
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
151 |
|
152 |
-
# Set max_steps to 1 for very fast testing and disable evaluation
|
153 |
training_args = TrainingArguments(
|
154 |
output_dir="./fine_tuned_legal_qa",
|
155 |
-
max_steps=1,
|
156 |
-
evaluation_strategy="no",
|
157 |
learning_rate=2e-5,
|
158 |
per_device_train_batch_size=4,
|
159 |
per_device_eval_batch_size=4,
|
@@ -162,7 +167,7 @@ def fine_tune_cuad_model():
|
|
162 |
logging_steps=1,
|
163 |
save_steps=1,
|
164 |
load_best_model_at_end=False,
|
165 |
-
report_to=[]
|
166 |
)
|
167 |
|
168 |
print("✅ Starting fine tuning on CUAD QA dataset...")
|
@@ -174,13 +179,10 @@ def fine_tune_cuad_model():
|
|
174 |
eval_dataset=val_dataset,
|
175 |
tokenizer=tokenizer,
|
176 |
)
|
177 |
-
|
178 |
trainer.train()
|
179 |
print("✅ Fine tuning completed. Saving model...")
|
180 |
-
|
181 |
model.save_pretrained("./fine_tuned_legal_qa")
|
182 |
tokenizer.save_pretrained("./fine_tuned_legal_qa")
|
183 |
-
|
184 |
return tokenizer, model
|
185 |
|
186 |
#############################
|
@@ -194,8 +196,6 @@ try:
|
|
194 |
spacy.cli.download("en_core_web_sm")
|
195 |
nlp = spacy.load("en_core_web_sm")
|
196 |
print("✅ Loading NLP models...")
|
197 |
-
|
198 |
-
# Use the slow PegasusTokenizer explicitly
|
199 |
from transformers import PegasusTokenizer
|
200 |
summarizer = pipeline(
|
201 |
"summarization",
|
@@ -203,25 +203,27 @@ try:
|
|
203 |
tokenizer=PegasusTokenizer.from_pretrained("nsi319/legal-pegasus", use_fast=False),
|
204 |
device=0 if torch.cuda.is_available() else -1
|
205 |
)
|
206 |
-
|
|
|
|
|
|
|
207 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
208 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if torch.cuda.is_available() else -1)
|
209 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
|
210 |
device_map="auto" if torch.cuda.is_available() else "cpu")
|
211 |
-
|
212 |
if os.path.exists("fine_tuned_legal_qa"):
|
213 |
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
214 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
215 |
from transformers import AutoModelForQuestionAnswering
|
216 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
217 |
cuad_model.to(device)
|
|
|
|
|
218 |
else:
|
219 |
print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
|
220 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
221 |
cuad_model.to(device)
|
222 |
-
|
223 |
print("✅ All models loaded successfully")
|
224 |
-
|
225 |
except Exception as e:
|
226 |
print(f"⚠️ Error loading models: {str(e)}")
|
227 |
raise RuntimeError(f"Error loading models: {str(e)}")
|
@@ -229,8 +231,10 @@ except Exception as e:
|
|
229 |
from transformers import pipeline
|
230 |
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
231 |
|
|
|
|
|
|
|
232 |
def legal_chatbot(user_input, context):
|
233 |
-
"""Uses a real NLP model for legal Q&A."""
|
234 |
global chat_history
|
235 |
chat_history.append({"role": "user", "content": user_input})
|
236 |
response = qa_model(question=user_input, context=context)["answer"]
|
@@ -238,7 +242,6 @@ def legal_chatbot(user_input, context):
|
|
238 |
return response
|
239 |
|
240 |
def extract_text_from_pdf(pdf_file):
|
241 |
-
"""Extracts text from a PDF file using pdfplumber."""
|
242 |
try:
|
243 |
with pdfplumber.open(pdf_file) as pdf:
|
244 |
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
|
@@ -246,8 +249,7 @@ def extract_text_from_pdf(pdf_file):
|
|
246 |
except Exception as e:
|
247 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
248 |
|
249 |
-
def process_video_to_text(video_file_path):
|
250 |
-
"""Extracts audio from video using ffmpeg and converts to text."""
|
251 |
try:
|
252 |
print(f"Processing video file at {video_file_path}")
|
253 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
@@ -256,9 +258,11 @@ def process_video_to_text(video_file_path):
|
|
256 |
"-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
|
257 |
temp_audio_path, "-y"
|
258 |
]
|
259 |
-
|
|
|
260 |
print(f"Audio extracted to {temp_audio_path}")
|
261 |
-
|
|
|
262 |
transcript = result["text"]
|
263 |
print(f"Transcription completed: {len(transcript)} characters")
|
264 |
if os.path.exists(temp_audio_path):
|
@@ -268,11 +272,10 @@ def process_video_to_text(video_file_path):
|
|
268 |
print(f"Error in video processing: {str(e)}")
|
269 |
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
270 |
|
271 |
-
def process_audio_to_text(audio_file_path):
|
272 |
-
"""Processes an audio file and converts it to text."""
|
273 |
try:
|
274 |
print(f"Processing audio file at {audio_file_path}")
|
275 |
-
result = speech_to_text
|
276 |
transcript = result["text"]
|
277 |
print(f"Transcription completed: {len(transcript)} characters")
|
278 |
return transcript
|
@@ -281,7 +284,6 @@ def process_audio_to_text(audio_file_path):
|
|
281 |
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
282 |
|
283 |
def extract_named_entities(text):
|
284 |
-
"""Extracts named entities from legal text."""
|
285 |
max_length = 10000
|
286 |
entities = []
|
287 |
for i in range(0, len(text), max_length):
|
@@ -290,120 +292,48 @@ def extract_named_entities(text):
|
|
290 |
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
|
291 |
return entities
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
if contexts:
|
328 |
-
combined_context = " ".join(contexts)
|
329 |
-
try:
|
330 |
-
summary_result = summarizer(combined_context, max_length=100, min_length=30, do_sample=False)
|
331 |
-
summary = summary_result[0]['summary_text']
|
332 |
-
except Exception as e:
|
333 |
-
summary = "Context summarization failed."
|
334 |
-
summarized_contexts[category] = summary
|
335 |
-
else:
|
336 |
-
summarized_contexts[category] = "No contextual details found."
|
337 |
-
return summarized_contexts
|
338 |
-
|
339 |
-
def get_detailed_risk_info(text):
|
340 |
-
"""
|
341 |
-
Returns detailed risk information by merging risk scores with descriptive details
|
342 |
-
and contextual summaries from the document.
|
343 |
-
"""
|
344 |
-
risk_details = {
|
345 |
-
"Liability": {
|
346 |
-
"description": "Liability refers to the legal responsibility for losses or damages.",
|
347 |
-
"common_concerns": "Broad liability clauses may expose parties to unforeseen risks.",
|
348 |
-
"recommendations": "Review and negotiate clear limits on liability.",
|
349 |
-
"example": "E.g., 'The party shall be liable for direct damages due to negligence.'"
|
350 |
-
},
|
351 |
-
"Termination": {
|
352 |
-
"description": "Termination involves conditions under which a contract can be ended.",
|
353 |
-
"common_concerns": "Unilateral termination rights or ambiguous conditions can be risky.",
|
354 |
-
"recommendations": "Ensure termination clauses are balanced and include notice periods.",
|
355 |
-
"example": "E.g., 'Either party may terminate the agreement with 30 days notice.'"
|
356 |
-
},
|
357 |
-
"Indemnification": {
|
358 |
-
"description": "Indemnification requires one party to compensate for losses incurred by the other.",
|
359 |
-
"common_concerns": "Overly broad indemnification can shift significant risk.",
|
360 |
-
"recommendations": "Negotiate clear limits and carve-outs where necessary.",
|
361 |
-
"example": "E.g., 'The seller shall indemnify the buyer against claims from product defects.'"
|
362 |
-
},
|
363 |
-
"Payment Risk": {
|
364 |
-
"description": "Payment risk pertains to terms regarding fees, schedules, and reimbursements.",
|
365 |
-
"common_concerns": "Vague payment terms or hidden charges increase risk.",
|
366 |
-
"recommendations": "Clarify payment conditions and include penalties for delays.",
|
367 |
-
"example": "E.g., 'Payments must be made within 30 days, with a 2% late fee thereafter.'"
|
368 |
-
},
|
369 |
-
"Insurance": {
|
370 |
-
"description": "Insurance risk covers the adequacy and scope of required coverage.",
|
371 |
-
"common_concerns": "Insufficient insurance can leave parties exposed in unexpected events.",
|
372 |
-
"recommendations": "Review insurance requirements to ensure they meet the risk profile.",
|
373 |
-
"example": "E.g., 'The contractor must maintain liability insurance with at least $1M coverage.'"
|
374 |
-
}
|
375 |
-
}
|
376 |
-
risk_scores = analyze_risk(text)
|
377 |
-
risk_keywords_context = {
|
378 |
-
"Liability": {"keywords": ["liability", "responsible", "responsibility", "legal obligation"]},
|
379 |
-
"Termination": {"keywords": ["termination", "breach", "contract end", "default"]},
|
380 |
-
"Indemnification": {"keywords": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"]},
|
381 |
-
"Payment Risk": {"keywords": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"]},
|
382 |
-
"Insurance": {"keywords": ["insurance", "coverage", "policy", "claims"]}
|
383 |
-
}
|
384 |
-
risk_contexts = extract_context_for_risk_terms(text, risk_keywords_context, window=1)
|
385 |
-
detailed_info = {}
|
386 |
-
for risk_term, score in risk_scores.items():
|
387 |
-
if score > 0:
|
388 |
-
info = risk_details.get(risk_term, {"description": "No details available."})
|
389 |
-
detailed_info[risk_term] = {
|
390 |
-
"score": score,
|
391 |
-
"description": info.get("description", ""),
|
392 |
-
"common_concerns": info.get("common_concerns", ""),
|
393 |
-
"recommendations": info.get("recommendations", ""),
|
394 |
-
"example": info.get("example", ""),
|
395 |
-
"context_summary": risk_contexts.get(risk_term, "No context available.")
|
396 |
-
}
|
397 |
-
return detailed_info
|
398 |
|
399 |
def analyze_contract_clauses(text):
|
400 |
-
"""Analyzes contract clauses using the fine-tuned CUAD QA model."""
|
401 |
max_length = 512
|
402 |
step = 256
|
403 |
clauses_detected = []
|
404 |
try:
|
405 |
clause_types = list(cuad_model.config.id2label.values())
|
406 |
-
except Exception
|
407 |
clause_types = [
|
408 |
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
|
409 |
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
|
@@ -426,50 +356,52 @@ def analyze_contract_clauses(text):
|
|
426 |
aggregated_clauses[clause_type] = clause
|
427 |
return list(aggregated_clauses.values())
|
428 |
|
|
|
|
|
|
|
|
|
429 |
@app.post("/analyze_legal_document")
|
430 |
async def analyze_legal_document(file: UploadFile = File(...)):
|
431 |
-
"""Analyzes a legal document for clause detection and compliance risks."""
|
432 |
try:
|
433 |
-
print(f"Processing file: {file.filename}")
|
434 |
content = await file.read()
|
435 |
-
|
|
|
|
|
|
|
|
|
436 |
if not text:
|
437 |
return {"status": "error", "message": "No valid text found in the document."}
|
438 |
summary_text = text[:4096] if len(text) > 4096 else text
|
439 |
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Document too short for meaningful summarization."
|
440 |
-
print("Extracting named entities...")
|
441 |
entities = extract_named_entities(text)
|
442 |
-
|
443 |
-
risk_scores = analyze_risk(text)
|
444 |
-
detailed_risk = get_detailed_risk_info(text)
|
445 |
-
print("Analyzing contract clauses...")
|
446 |
clauses = analyze_contract_clauses(text)
|
447 |
generated_task_id = str(uuid.uuid4())
|
448 |
store_document_context(generated_task_id, text)
|
449 |
-
|
450 |
"status": "success",
|
451 |
"task_id": generated_task_id,
|
452 |
"summary": summary,
|
453 |
"named_entities": entities,
|
454 |
-
"
|
455 |
-
"detailed_risk": detailed_risk,
|
456 |
"clauses_detected": clauses
|
457 |
}
|
|
|
|
|
458 |
except Exception as e:
|
459 |
-
print(f"Error processing document: {str(e)}")
|
460 |
return {"status": "error", "message": str(e)}
|
461 |
|
462 |
@app.post("/analyze_legal_video")
|
463 |
-
async def analyze_legal_video(file: UploadFile = File(...)):
|
464 |
-
"""Analyzes a legal video by transcribing audio and analyzing the transcript."""
|
465 |
try:
|
466 |
-
print(f"Processing video file: {file.filename}")
|
467 |
content = await file.read()
|
|
|
|
|
|
|
468 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
469 |
temp_file.write(content)
|
470 |
temp_file_path = temp_file.name
|
471 |
-
|
472 |
-
text = process_video_to_text(temp_file_path)
|
473 |
if os.path.exists(temp_file_path):
|
474 |
os.remove(temp_file_path)
|
475 |
if not text:
|
@@ -479,41 +411,37 @@ async def analyze_legal_video(file: UploadFile = File(...)):
|
|
479 |
f.write(text)
|
480 |
summary_text = text[:4096] if len(text) > 4096 else text
|
481 |
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
|
482 |
-
print("Extracting named entities from transcript...")
|
483 |
entities = extract_named_entities(text)
|
484 |
-
|
485 |
-
risk_scores = analyze_risk(text)
|
486 |
-
detailed_risk = get_detailed_risk_info(text)
|
487 |
-
print("Analyzing legal clauses from transcript...")
|
488 |
clauses = analyze_contract_clauses(text)
|
489 |
generated_task_id = str(uuid.uuid4())
|
490 |
store_document_context(generated_task_id, text)
|
491 |
-
|
492 |
"status": "success",
|
493 |
"task_id": generated_task_id,
|
494 |
"transcript": text,
|
495 |
"transcript_path": transcript_path,
|
496 |
"summary": summary,
|
497 |
"named_entities": entities,
|
498 |
-
"
|
499 |
-
"detailed_risk": detailed_risk,
|
500 |
"clauses_detected": clauses
|
501 |
}
|
|
|
|
|
502 |
except Exception as e:
|
503 |
-
print(f"Error processing video: {str(e)}")
|
504 |
return {"status": "error", "message": str(e)}
|
505 |
|
506 |
@app.post("/analyze_legal_audio")
|
507 |
-
async def analyze_legal_audio(file: UploadFile = File(...)):
|
508 |
-
"""Analyzes legal audio by transcribing and analyzing the transcript."""
|
509 |
try:
|
510 |
-
print(f"Processing audio file: {file.filename}")
|
511 |
content = await file.read()
|
|
|
|
|
|
|
512 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
513 |
temp_file.write(content)
|
514 |
temp_file_path = temp_file.name
|
515 |
-
|
516 |
-
text = process_audio_to_text(temp_file_path)
|
517 |
if os.path.exists(temp_file_path):
|
518 |
os.remove(temp_file_path)
|
519 |
if not text:
|
@@ -523,33 +451,28 @@ async def analyze_legal_audio(file: UploadFile = File(...)):
|
|
523 |
f.write(text)
|
524 |
summary_text = text[:4096] if len(text) > 4096 else text
|
525 |
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
|
526 |
-
print("Extracting named entities from transcript...")
|
527 |
entities = extract_named_entities(text)
|
528 |
-
|
529 |
-
risk_scores = analyze_risk(text)
|
530 |
-
detailed_risk = get_detailed_risk_info(text)
|
531 |
-
print("Analyzing legal clauses from transcript...")
|
532 |
clauses = analyze_contract_clauses(text)
|
533 |
generated_task_id = str(uuid.uuid4())
|
534 |
store_document_context(generated_task_id, text)
|
535 |
-
|
536 |
"status": "success",
|
537 |
"task_id": generated_task_id,
|
538 |
"transcript": text,
|
539 |
"transcript_path": transcript_path,
|
540 |
"summary": summary,
|
541 |
"named_entities": entities,
|
542 |
-
"
|
543 |
-
"detailed_risk": detailed_risk,
|
544 |
"clauses_detected": clauses
|
545 |
}
|
|
|
|
|
546 |
except Exception as e:
|
547 |
-
print(f"Error processing audio: {str(e)}")
|
548 |
return {"status": "error", "message": str(e)}
|
549 |
|
550 |
@app.get("/transcript/{transcript_id}")
|
551 |
async def get_transcript(transcript_id: str):
|
552 |
-
"""Retrieves a previously generated transcript."""
|
553 |
transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
|
554 |
if os.path.exists(transcript_path):
|
555 |
return FileResponse(transcript_path)
|
@@ -558,7 +481,6 @@ async def get_transcript(transcript_id: str):
|
|
558 |
|
559 |
@app.post("/legal_chatbot")
|
560 |
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
|
561 |
-
"""Handles legal Q&A using chat history and document context."""
|
562 |
document_context = load_document_context(task_id)
|
563 |
if not document_context:
|
564 |
return {"response": "⚠️ No relevant document found for this task ID."}
|
@@ -576,7 +498,6 @@ async def health_check():
|
|
576 |
}
|
577 |
|
578 |
def setup_ngrok():
|
579 |
-
"""Sets up ngrok tunnel for Google Colab."""
|
580 |
try:
|
581 |
auth_token = os.environ.get("NGROK_AUTH_TOKEN")
|
582 |
if auth_token:
|
@@ -603,65 +524,59 @@ def setup_ngrok():
|
|
603 |
print(f"⚠️ Ngrok setup error: {e}")
|
604 |
return None
|
605 |
|
606 |
-
|
|
|
|
|
607 |
|
608 |
@app.get("/download_risk_chart")
|
609 |
-
async def download_risk_chart():
|
610 |
-
"""Generate and return a risk assessment chart as an image file."""
|
611 |
try:
|
612 |
-
|
613 |
-
|
614 |
-
"
|
615 |
-
|
616 |
-
"Indemnification": 10,
|
617 |
-
"Payment Risk": 41,
|
618 |
-
"Insurance": 71
|
619 |
-
}
|
620 |
plt.figure(figsize=(8, 5))
|
621 |
-
plt.bar(
|
622 |
-
plt.xlabel("Risk Categories")
|
623 |
plt.ylabel("Risk Score")
|
624 |
-
plt.title("Legal Risk Assessment")
|
625 |
-
|
626 |
-
risk_chart_path = "static/risk_chart.png"
|
627 |
plt.savefig(risk_chart_path)
|
628 |
plt.close()
|
629 |
-
return FileResponse(risk_chart_path, media_type="image/png", filename="
|
630 |
except Exception as e:
|
631 |
raise HTTPException(status_code=500, detail=f"Error generating risk chart: {str(e)}")
|
632 |
|
633 |
@app.get("/download_risk_pie_chart")
|
634 |
-
async def download_risk_pie_chart():
|
635 |
try:
|
636 |
-
|
637 |
-
|
638 |
-
"
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
|
|
|
|
643 |
plt.figure(figsize=(6, 6))
|
644 |
-
plt.pie(
|
645 |
-
plt.title("Legal Risk Distribution")
|
646 |
-
pie_chart_path = "static
|
647 |
plt.savefig(pie_chart_path)
|
648 |
plt.close()
|
649 |
-
return FileResponse(pie_chart_path, media_type="image/png", filename="
|
650 |
except Exception as e:
|
651 |
raise HTTPException(status_code=500, detail=f"Error generating pie chart: {str(e)}")
|
652 |
|
653 |
@app.get("/download_risk_radar_chart")
|
654 |
-
async def download_risk_radar_chart():
|
655 |
try:
|
656 |
-
|
657 |
-
|
658 |
-
"
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
}
|
663 |
-
categories = list(risk_scores.keys())
|
664 |
-
values = list(risk_scores.values())
|
665 |
categories += categories[:1]
|
666 |
values += values[:1]
|
667 |
angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
|
@@ -669,66 +584,61 @@ async def download_risk_radar_chart():
|
|
669 |
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
|
670 |
ax.plot(angles, values, 'o-', linewidth=2)
|
671 |
ax.fill(angles, values, alpha=0.25)
|
672 |
-
ax.set_thetagrids(np.degrees(angles[:-1]),
|
673 |
-
ax.set_title("Legal Risk Radar Chart", y=1.1)
|
674 |
-
radar_chart_path = "static
|
675 |
plt.savefig(radar_chart_path)
|
676 |
plt.close()
|
677 |
-
return FileResponse(radar_chart_path, media_type="image/png", filename="
|
678 |
except Exception as e:
|
679 |
raise HTTPException(status_code=500, detail=f"Error generating radar chart: {str(e)}")
|
680 |
|
681 |
@app.get("/download_risk_trend_chart")
|
682 |
-
async def download_risk_trend_chart():
|
683 |
try:
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
|
|
|
|
|
|
692 |
plt.figure(figsize=(10, 6))
|
693 |
-
|
694 |
-
|
695 |
-
plt.xlabel("Date")
|
696 |
plt.ylabel("Risk Score")
|
697 |
-
plt.title("
|
698 |
plt.xticks(rotation=45)
|
699 |
-
|
700 |
-
trend_chart_path = "static/risk_trend_chart.png"
|
701 |
plt.savefig(trend_chart_path, bbox_inches="tight")
|
702 |
plt.close()
|
703 |
-
return FileResponse(trend_chart_path, media_type="image/png", filename="
|
704 |
except Exception as e:
|
705 |
raise HTTPException(status_code=500, detail=f"Error generating trend chart: {str(e)}")
|
706 |
|
707 |
-
import pandas as pd
|
708 |
-
import plotly.express as px
|
709 |
-
from fastapi.responses import HTMLResponse
|
710 |
-
|
711 |
@app.get("/interactive_risk_chart", response_class=HTMLResponse)
|
712 |
-
async def interactive_risk_chart():
|
713 |
try:
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
"
|
719 |
-
|
720 |
-
}
|
721 |
df = pd.DataFrame({
|
722 |
-
"
|
723 |
-
"
|
724 |
})
|
725 |
-
fig = px.bar(df, x="
|
726 |
return fig.to_html()
|
727 |
except Exception as e:
|
728 |
raise HTTPException(status_code=500, detail=f"Error generating interactive chart: {str(e)}")
|
729 |
|
730 |
def run():
|
731 |
-
"""Starts the FastAPI server."""
|
732 |
print("Starting FastAPI server...")
|
733 |
uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)
|
734 |
|
@@ -739,3 +649,4 @@ if __name__ == "__main__":
|
|
739 |
else:
|
740 |
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
|
741 |
run()
|
|
|
|
12 |
import numpy as np
|
13 |
import json
|
14 |
import tempfile
|
15 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, BackgroundTasks
|
16 |
from fastapi.responses import FileResponse, JSONResponse
|
17 |
from fastapi.middleware.cors import CORSMiddleware
|
18 |
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
|
|
22 |
import time
|
23 |
import uuid
|
24 |
import subprocess # For running ffmpeg commands
|
25 |
+
import hashlib # For caching file results
|
26 |
+
|
27 |
+
# For asynchronous blocking calls
|
28 |
+
from starlette.concurrency import run_in_threadpool
|
29 |
+
|
30 |
+
# Import gensim for topic modeling
|
31 |
+
import gensim
|
32 |
+
from gensim import corpora, models
|
33 |
+
|
34 |
+
# Global cache for analysis results based on file hash
|
35 |
+
analysis_cache = {}
|
36 |
|
37 |
# Ensure compatibility with Google Colab
|
38 |
try:
|
|
|
60 |
allow_headers=["*"],
|
61 |
)
|
62 |
|
63 |
+
# In-memory storage for document text and chat history
|
64 |
document_storage = {}
|
65 |
chat_history = []
|
66 |
|
|
|
73 |
def load_document_context(task_id):
|
74 |
return document_storage.get(task_id, "")
|
75 |
|
76 |
+
# Utility to compute MD5 hash from file content
|
77 |
+
def compute_md5(content: bytes) -> str:
|
78 |
+
return hashlib.md5(content).hexdigest()
|
79 |
+
|
80 |
#############################
|
81 |
# Fine-tuning on CUAD QA #
|
82 |
#############################
|
83 |
|
84 |
def fine_tune_cuad_model():
|
|
|
|
|
|
|
|
|
|
|
85 |
from datasets import load_dataset
|
86 |
import numpy as np
|
87 |
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering
|
|
|
90 |
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
|
91 |
|
92 |
if "train" in dataset:
|
|
|
93 |
train_dataset = dataset["train"].select(range(50))
|
94 |
if "validation" in dataset:
|
|
|
95 |
val_dataset = dataset["validation"].select(range(10))
|
96 |
else:
|
97 |
split = train_dataset.train_test_split(test_size=0.2)
|
|
|
101 |
raise ValueError("CUAD dataset does not have a train split")
|
102 |
|
103 |
print("✅ Preparing training features...")
|
|
|
104 |
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
105 |
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
106 |
|
|
|
152 |
print("✅ Tokenizing dataset...")
|
153 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
154 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
|
|
155 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
156 |
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
157 |
|
|
|
158 |
training_args = TrainingArguments(
|
159 |
output_dir="./fine_tuned_legal_qa",
|
160 |
+
max_steps=1,
|
161 |
+
evaluation_strategy="no",
|
162 |
learning_rate=2e-5,
|
163 |
per_device_train_batch_size=4,
|
164 |
per_device_eval_batch_size=4,
|
|
|
167 |
logging_steps=1,
|
168 |
save_steps=1,
|
169 |
load_best_model_at_end=False,
|
170 |
+
report_to=[]
|
171 |
)
|
172 |
|
173 |
print("✅ Starting fine tuning on CUAD QA dataset...")
|
|
|
179 |
eval_dataset=val_dataset,
|
180 |
tokenizer=tokenizer,
|
181 |
)
|
|
|
182 |
trainer.train()
|
183 |
print("✅ Fine tuning completed. Saving model...")
|
|
|
184 |
model.save_pretrained("./fine_tuned_legal_qa")
|
185 |
tokenizer.save_pretrained("./fine_tuned_legal_qa")
|
|
|
186 |
return tokenizer, model
|
187 |
|
188 |
#############################
|
|
|
196 |
spacy.cli.download("en_core_web_sm")
|
197 |
nlp = spacy.load("en_core_web_sm")
|
198 |
print("✅ Loading NLP models...")
|
|
|
|
|
199 |
from transformers import PegasusTokenizer
|
200 |
summarizer = pipeline(
|
201 |
"summarization",
|
|
|
203 |
tokenizer=PegasusTokenizer.from_pretrained("nsi319/legal-pegasus", use_fast=False),
|
204 |
device=0 if torch.cuda.is_available() else -1
|
205 |
)
|
206 |
+
# Optionally convert summarizer model to FP16 for faster inference on GPU
|
207 |
+
if device == "cuda":
|
208 |
+
summarizer.model.half()
|
209 |
+
|
210 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
211 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if torch.cuda.is_available() else -1)
|
212 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
|
213 |
device_map="auto" if torch.cuda.is_available() else "cpu")
|
|
|
214 |
if os.path.exists("fine_tuned_legal_qa"):
|
215 |
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
216 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
217 |
from transformers import AutoModelForQuestionAnswering
|
218 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
219 |
cuad_model.to(device)
|
220 |
+
if device == "cuda":
|
221 |
+
cuad_model.half()
|
222 |
else:
|
223 |
print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
|
224 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
225 |
cuad_model.to(device)
|
|
|
226 |
print("✅ All models loaded successfully")
|
|
|
227 |
except Exception as e:
|
228 |
print(f"⚠️ Error loading models: {str(e)}")
|
229 |
raise RuntimeError(f"Error loading models: {str(e)}")
|
|
|
231 |
from transformers import pipeline
|
232 |
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
233 |
|
234 |
+
# Initialize sentiment-analysis pipeline
|
235 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=0 if torch.cuda.is_available() else -1)
|
236 |
+
|
237 |
def legal_chatbot(user_input, context):
|
|
|
238 |
global chat_history
|
239 |
chat_history.append({"role": "user", "content": user_input})
|
240 |
response = qa_model(question=user_input, context=context)["answer"]
|
|
|
242 |
return response
|
243 |
|
244 |
def extract_text_from_pdf(pdf_file):
|
|
|
245 |
try:
|
246 |
with pdfplumber.open(pdf_file) as pdf:
|
247 |
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
|
|
|
249 |
except Exception as e:
|
250 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
251 |
|
252 |
+
async def process_video_to_text(video_file_path):
|
|
|
253 |
try:
|
254 |
print(f"Processing video file at {video_file_path}")
|
255 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
|
|
258 |
"-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
|
259 |
temp_audio_path, "-y"
|
260 |
]
|
261 |
+
# Run ffmpeg in a separate thread
|
262 |
+
await run_in_threadpool(subprocess.run, cmd, check=True)
|
263 |
print(f"Audio extracted to {temp_audio_path}")
|
264 |
+
# Run speech-to-text in threadpool
|
265 |
+
result = await run_in_threadpool(speech_to_text, temp_audio_path)
|
266 |
transcript = result["text"]
|
267 |
print(f"Transcription completed: {len(transcript)} characters")
|
268 |
if os.path.exists(temp_audio_path):
|
|
|
272 |
print(f"Error in video processing: {str(e)}")
|
273 |
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
274 |
|
275 |
+
async def process_audio_to_text(audio_file_path):
|
|
|
276 |
try:
|
277 |
print(f"Processing audio file at {audio_file_path}")
|
278 |
+
result = await run_in_threadpool(speech_to_text, audio_file_path)
|
279 |
transcript = result["text"]
|
280 |
print(f"Transcription completed: {len(transcript)} characters")
|
281 |
return transcript
|
|
|
284 |
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
285 |
|
286 |
def extract_named_entities(text):
|
|
|
287 |
max_length = 10000
|
288 |
entities = []
|
289 |
for i in range(0, len(text), max_length):
|
|
|
292 |
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
|
293 |
return entities
|
294 |
|
295 |
+
# -----------------------------
|
296 |
+
# Enhanced Risk Analysis Functions
|
297 |
+
# -----------------------------
|
298 |
+
|
299 |
+
def analyze_sentiment(text):
|
300 |
+
sentences = [sent.text for sent in nlp(text).sents]
|
301 |
+
if not sentences:
|
302 |
+
return 0
|
303 |
+
results = sentiment_pipeline(sentences, batch_size=16)
|
304 |
+
scores = [res["score"] if res["label"] == "POSITIVE" else -res["score"] for res in results]
|
305 |
+
avg_sentiment = sum(scores) / len(scores) if scores else 0
|
306 |
+
return avg_sentiment
|
307 |
+
|
308 |
+
def analyze_topics(text, num_topics=3):
|
309 |
+
tokens = gensim.utils.simple_preprocess(text, deacc=True)
|
310 |
+
if not tokens:
|
311 |
+
return []
|
312 |
+
dictionary = corpora.Dictionary([tokens])
|
313 |
+
corpus = [dictionary.doc2bow(tokens)]
|
314 |
+
lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10)
|
315 |
+
topics = lda_model.print_topics(num_topics=num_topics)
|
316 |
+
return topics
|
317 |
+
|
318 |
+
def get_enhanced_context_info(text):
|
319 |
+
enhanced = {}
|
320 |
+
enhanced["average_sentiment"] = analyze_sentiment(text)
|
321 |
+
enhanced["topics"] = analyze_topics(text, num_topics=5)
|
322 |
+
return enhanced
|
323 |
+
|
324 |
+
def analyze_risk_enhanced(text):
|
325 |
+
enhanced = get_enhanced_context_info(text)
|
326 |
+
avg_sentiment = enhanced["average_sentiment"]
|
327 |
+
risk_score = abs(avg_sentiment) if avg_sentiment < 0 else 0
|
328 |
+
return {"risk_score": risk_score, "average_sentiment": avg_sentiment, "topics": enhanced["topics"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
def analyze_contract_clauses(text):
|
|
|
331 |
max_length = 512
|
332 |
step = 256
|
333 |
clauses_detected = []
|
334 |
try:
|
335 |
clause_types = list(cuad_model.config.id2label.values())
|
336 |
+
except Exception:
|
337 |
clause_types = [
|
338 |
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
|
339 |
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
|
|
|
356 |
aggregated_clauses[clause_type] = clause
|
357 |
return list(aggregated_clauses.values())
|
358 |
|
359 |
+
# -----------------------------
|
360 |
+
# Endpoints
|
361 |
+
# -----------------------------
|
362 |
+
|
363 |
@app.post("/analyze_legal_document")
|
364 |
async def analyze_legal_document(file: UploadFile = File(...)):
|
|
|
365 |
try:
|
|
|
366 |
content = await file.read()
|
367 |
+
file_hash = compute_md5(content)
|
368 |
+
# Return cached result if available
|
369 |
+
if file_hash in analysis_cache:
|
370 |
+
return analysis_cache[file_hash]
|
371 |
+
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
|
372 |
if not text:
|
373 |
return {"status": "error", "message": "No valid text found in the document."}
|
374 |
summary_text = text[:4096] if len(text) > 4096 else text
|
375 |
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Document too short for meaningful summarization."
|
|
|
376 |
entities = extract_named_entities(text)
|
377 |
+
risk_analysis = analyze_risk_enhanced(text)
|
|
|
|
|
|
|
378 |
clauses = analyze_contract_clauses(text)
|
379 |
generated_task_id = str(uuid.uuid4())
|
380 |
store_document_context(generated_task_id, text)
|
381 |
+
result = {
|
382 |
"status": "success",
|
383 |
"task_id": generated_task_id,
|
384 |
"summary": summary,
|
385 |
"named_entities": entities,
|
386 |
+
"risk_analysis": risk_analysis,
|
|
|
387 |
"clauses_detected": clauses
|
388 |
}
|
389 |
+
analysis_cache[file_hash] = result
|
390 |
+
return result
|
391 |
except Exception as e:
|
|
|
392 |
return {"status": "error", "message": str(e)}
|
393 |
|
394 |
@app.post("/analyze_legal_video")
|
395 |
+
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
|
|
396 |
try:
|
|
|
397 |
content = await file.read()
|
398 |
+
file_hash = compute_md5(content)
|
399 |
+
if file_hash in analysis_cache:
|
400 |
+
return analysis_cache[file_hash]
|
401 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
402 |
temp_file.write(content)
|
403 |
temp_file_path = temp_file.name
|
404 |
+
text = await process_video_to_text(temp_file_path)
|
|
|
405 |
if os.path.exists(temp_file_path):
|
406 |
os.remove(temp_file_path)
|
407 |
if not text:
|
|
|
411 |
f.write(text)
|
412 |
summary_text = text[:4096] if len(text) > 4096 else text
|
413 |
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
|
|
|
414 |
entities = extract_named_entities(text)
|
415 |
+
risk_analysis = analyze_risk_enhanced(text)
|
|
|
|
|
|
|
416 |
clauses = analyze_contract_clauses(text)
|
417 |
generated_task_id = str(uuid.uuid4())
|
418 |
store_document_context(generated_task_id, text)
|
419 |
+
result = {
|
420 |
"status": "success",
|
421 |
"task_id": generated_task_id,
|
422 |
"transcript": text,
|
423 |
"transcript_path": transcript_path,
|
424 |
"summary": summary,
|
425 |
"named_entities": entities,
|
426 |
+
"risk_analysis": risk_analysis,
|
|
|
427 |
"clauses_detected": clauses
|
428 |
}
|
429 |
+
analysis_cache[file_hash] = result
|
430 |
+
return result
|
431 |
except Exception as e:
|
|
|
432 |
return {"status": "error", "message": str(e)}
|
433 |
|
434 |
@app.post("/analyze_legal_audio")
|
435 |
+
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
|
|
436 |
try:
|
|
|
437 |
content = await file.read()
|
438 |
+
file_hash = compute_md5(content)
|
439 |
+
if file_hash in analysis_cache:
|
440 |
+
return analysis_cache[file_hash]
|
441 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
442 |
temp_file.write(content)
|
443 |
temp_file_path = temp_file.name
|
444 |
+
text = await process_audio_to_text(temp_file_path)
|
|
|
445 |
if os.path.exists(temp_file_path):
|
446 |
os.remove(temp_file_path)
|
447 |
if not text:
|
|
|
451 |
f.write(text)
|
452 |
summary_text = text[:4096] if len(text) > 4096 else text
|
453 |
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
|
|
|
454 |
entities = extract_named_entities(text)
|
455 |
+
risk_analysis = analyze_risk_enhanced(text)
|
|
|
|
|
|
|
456 |
clauses = analyze_contract_clauses(text)
|
457 |
generated_task_id = str(uuid.uuid4())
|
458 |
store_document_context(generated_task_id, text)
|
459 |
+
result = {
|
460 |
"status": "success",
|
461 |
"task_id": generated_task_id,
|
462 |
"transcript": text,
|
463 |
"transcript_path": transcript_path,
|
464 |
"summary": summary,
|
465 |
"named_entities": entities,
|
466 |
+
"risk_analysis": risk_analysis,
|
|
|
467 |
"clauses_detected": clauses
|
468 |
}
|
469 |
+
analysis_cache[file_hash] = result
|
470 |
+
return result
|
471 |
except Exception as e:
|
|
|
472 |
return {"status": "error", "message": str(e)}
|
473 |
|
474 |
@app.get("/transcript/{transcript_id}")
|
475 |
async def get_transcript(transcript_id: str):
|
|
|
476 |
transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
|
477 |
if os.path.exists(transcript_path):
|
478 |
return FileResponse(transcript_path)
|
|
|
481 |
|
482 |
@app.post("/legal_chatbot")
|
483 |
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
|
|
|
484 |
document_context = load_document_context(task_id)
|
485 |
if not document_context:
|
486 |
return {"response": "⚠️ No relevant document found for this task ID."}
|
|
|
498 |
}
|
499 |
|
500 |
def setup_ngrok():
|
|
|
501 |
try:
|
502 |
auth_token = os.environ.get("NGROK_AUTH_TOKEN")
|
503 |
if auth_token:
|
|
|
524 |
print(f"⚠️ Ngrok setup error: {e}")
|
525 |
return None
|
526 |
|
527 |
+
# ------------------------------
|
528 |
+
# Dynamic Visualization Endpoints
|
529 |
+
# ------------------------------
|
530 |
|
531 |
@app.get("/download_risk_chart")
|
532 |
+
async def download_risk_chart(task_id: str):
|
|
|
533 |
try:
|
534 |
+
text = load_document_context(task_id)
|
535 |
+
if not text:
|
536 |
+
raise HTTPException(status_code=404, detail="Document context not found")
|
537 |
+
risk_analysis = analyze_risk_enhanced(text)
|
|
|
|
|
|
|
|
|
538 |
plt.figure(figsize=(8, 5))
|
539 |
+
plt.bar(["Risk Score"], [risk_analysis["risk_score"]], color='red')
|
|
|
540 |
plt.ylabel("Risk Score")
|
541 |
+
plt.title("Legal Risk Assessment (Enhanced)")
|
542 |
+
risk_chart_path = os.path.join("static", f"risk_chart_{task_id}.png")
|
|
|
543 |
plt.savefig(risk_chart_path)
|
544 |
plt.close()
|
545 |
+
return FileResponse(risk_chart_path, media_type="image/png", filename=f"risk_chart_{task_id}.png")
|
546 |
except Exception as e:
|
547 |
raise HTTPException(status_code=500, detail=f"Error generating risk chart: {str(e)}")
|
548 |
|
549 |
@app.get("/download_risk_pie_chart")
|
550 |
+
async def download_risk_pie_chart(task_id: str):
|
551 |
try:
|
552 |
+
text = load_document_context(task_id)
|
553 |
+
if not text:
|
554 |
+
raise HTTPException(status_code=404, detail="Document context not found")
|
555 |
+
risk_analysis = analyze_risk_enhanced(text)
|
556 |
+
labels = ["Risk", "No Risk"]
|
557 |
+
# Ensure the values are within [0,1]
|
558 |
+
risk_value = risk_analysis["risk_score"]
|
559 |
+
risk_value = min(max(risk_value, 0), 1)
|
560 |
+
values = [risk_value, 1 - risk_value]
|
561 |
plt.figure(figsize=(6, 6))
|
562 |
+
plt.pie(values, labels=labels, autopct='%1.1f%%', startangle=90)
|
563 |
+
plt.title("Legal Risk Distribution (Enhanced)")
|
564 |
+
pie_chart_path = os.path.join("static", f"risk_pie_chart_{task_id}.png")
|
565 |
plt.savefig(pie_chart_path)
|
566 |
plt.close()
|
567 |
+
return FileResponse(pie_chart_path, media_type="image/png", filename=f"risk_pie_chart_{task_id}.png")
|
568 |
except Exception as e:
|
569 |
raise HTTPException(status_code=500, detail=f"Error generating pie chart: {str(e)}")
|
570 |
|
571 |
@app.get("/download_risk_radar_chart")
|
572 |
+
async def download_risk_radar_chart(task_id: str):
|
573 |
try:
|
574 |
+
text = load_document_context(task_id)
|
575 |
+
if not text:
|
576 |
+
raise HTTPException(status_code=404, detail="Document context not found")
|
577 |
+
risk_analysis = analyze_risk_enhanced(text)
|
578 |
+
categories = ["Average Sentiment", "Risk Score"]
|
579 |
+
values = [risk_analysis["average_sentiment"], risk_analysis["risk_score"]]
|
|
|
|
|
|
|
580 |
categories += categories[:1]
|
581 |
values += values[:1]
|
582 |
angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
|
|
|
584 |
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
|
585 |
ax.plot(angles, values, 'o-', linewidth=2)
|
586 |
ax.fill(angles, values, alpha=0.25)
|
587 |
+
ax.set_thetagrids(np.degrees(angles[:-1]), ["Sentiment", "Risk"])
|
588 |
+
ax.set_title("Legal Risk Radar Chart (Enhanced)", y=1.1)
|
589 |
+
radar_chart_path = os.path.join("static", f"risk_radar_chart_{task_id}.png")
|
590 |
plt.savefig(radar_chart_path)
|
591 |
plt.close()
|
592 |
+
return FileResponse(radar_chart_path, media_type="image/png", filename=f"risk_radar_chart_{task_id}.png")
|
593 |
except Exception as e:
|
594 |
raise HTTPException(status_code=500, detail=f"Error generating radar chart: {str(e)}")
|
595 |
|
596 |
@app.get("/download_risk_trend_chart")
|
597 |
+
async def download_risk_trend_chart(task_id: str):
|
598 |
try:
|
599 |
+
text = load_document_context(task_id)
|
600 |
+
if not text:
|
601 |
+
raise HTTPException(status_code=404, detail="Document context not found")
|
602 |
+
words = text.split()
|
603 |
+
segments = np.array_split(words, 4)
|
604 |
+
segment_texts = [" ".join(segment) for segment in segments]
|
605 |
+
trend_scores = []
|
606 |
+
for segment in segment_texts:
|
607 |
+
risk = analyze_risk_enhanced(segment)
|
608 |
+
trend_scores.append(risk["risk_score"])
|
609 |
+
segments_labels = [f"Segment {i+1}" for i in range(len(segment_texts))]
|
610 |
plt.figure(figsize=(10, 6))
|
611 |
+
plt.plot(segments_labels, trend_scores, marker='o')
|
612 |
+
plt.xlabel("Document Segments")
|
|
|
613 |
plt.ylabel("Risk Score")
|
614 |
+
plt.title("Dynamic Legal Risk Trends (Enhanced)")
|
615 |
plt.xticks(rotation=45)
|
616 |
+
trend_chart_path = os.path.join("static", f"risk_trend_chart_{task_id}.png")
|
|
|
617 |
plt.savefig(trend_chart_path, bbox_inches="tight")
|
618 |
plt.close()
|
619 |
+
return FileResponse(trend_chart_path, media_type="image/png", filename=f"risk_trend_chart_{task_id}.png")
|
620 |
except Exception as e:
|
621 |
raise HTTPException(status_code=500, detail=f"Error generating trend chart: {str(e)}")
|
622 |
|
|
|
|
|
|
|
|
|
623 |
@app.get("/interactive_risk_chart", response_class=HTMLResponse)
|
624 |
+
async def interactive_risk_chart(task_id: str):
|
625 |
try:
|
626 |
+
import pandas as pd
|
627 |
+
import plotly.express as px
|
628 |
+
text = load_document_context(task_id)
|
629 |
+
if not text:
|
630 |
+
raise HTTPException(status_code=404, detail="Document context not found")
|
631 |
+
risk_analysis = analyze_risk_enhanced(text)
|
|
|
632 |
df = pd.DataFrame({
|
633 |
+
"Metric": ["Average Sentiment", "Risk Score"],
|
634 |
+
"Value": [risk_analysis["average_sentiment"], risk_analysis["risk_score"]]
|
635 |
})
|
636 |
+
fig = px.bar(df, x="Metric", y="Value", title="Interactive Enhanced Legal Risk Assessment")
|
637 |
return fig.to_html()
|
638 |
except Exception as e:
|
639 |
raise HTTPException(status_code=500, detail=f"Error generating interactive chart: {str(e)}")
|
640 |
|
641 |
def run():
|
|
|
642 |
print("Starting FastAPI server...")
|
643 |
uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)
|
644 |
|
|
|
649 |
else:
|
650 |
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
|
651 |
run()
|
652 |
+
|