Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,11 +28,11 @@ import hashlib # For caching file results
|
|
| 28 |
# For asynchronous blocking calls
|
| 29 |
from starlette.concurrency import run_in_threadpool
|
| 30 |
|
| 31 |
-
#
|
| 32 |
import gensim
|
| 33 |
from gensim import corpora, models
|
| 34 |
|
| 35 |
-
#
|
| 36 |
from spacy.lang.en.stop_words import STOP_WORDS
|
| 37 |
|
| 38 |
# Global cache for analysis results based on file hash
|
|
@@ -43,19 +43,19 @@ try:
|
|
| 43 |
from google.colab import drive
|
| 44 |
drive.mount('/content/drive')
|
| 45 |
except Exception:
|
| 46 |
-
pass #
|
| 47 |
|
| 48 |
-
#
|
| 49 |
os.makedirs("static", exist_ok=True)
|
| 50 |
os.makedirs("temp", exist_ok=True)
|
| 51 |
|
| 52 |
-
#
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
|
| 55 |
-
#
|
| 56 |
app = FastAPI(title="Legal Document and Video Analyzer")
|
| 57 |
|
| 58 |
-
#
|
| 59 |
app.add_middleware(
|
| 60 |
CORSMiddleware,
|
| 61 |
allow_origins=["*"],
|
|
@@ -64,31 +64,31 @@ app.add_middleware(
|
|
| 64 |
allow_headers=["*"],
|
| 65 |
)
|
| 66 |
|
| 67 |
-
# In-memory storage
|
| 68 |
document_storage = {}
|
| 69 |
chat_history = []
|
| 70 |
|
| 71 |
-
# Function to store document context by task ID
|
| 72 |
def store_document_context(task_id, text):
|
| 73 |
document_storage[task_id] = text
|
| 74 |
return True
|
| 75 |
|
| 76 |
-
# Function to load document context by task ID
|
| 77 |
def load_document_context(task_id):
|
| 78 |
return document_storage.get(task_id, "")
|
| 79 |
|
| 80 |
-
# Utility to compute MD5 hash from file content
|
| 81 |
def compute_md5(content: bytes) -> str:
|
| 82 |
return hashlib.md5(content).hexdigest()
|
| 83 |
|
| 84 |
#############################
|
| 85 |
-
# Fine-tuning on CUAD QA
|
| 86 |
#############################
|
| 87 |
|
| 88 |
def fine_tune_cuad_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
from datasets import load_dataset
|
| 90 |
-
import
|
| 91 |
-
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering
|
| 92 |
|
| 93 |
print("✅ Loading CUAD dataset for fine tuning...")
|
| 94 |
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
|
|
@@ -144,7 +144,6 @@ def fine_tune_cuad_model():
|
|
| 144 |
tokenized_end_index = len(input_ids) - 1
|
| 145 |
while tokenized_end_index >= 0 and sequence_ids[tokenized_end_index] != 1:
|
| 146 |
tokenized_end_index -= 1
|
| 147 |
-
# Safety check: if indices are not found, default to cls_index
|
| 148 |
if tokenized_start_index >= len(offsets) or tokenized_end_index < 0:
|
| 149 |
tokenized_examples["start_positions"].append(cls_index)
|
| 150 |
tokenized_examples["end_positions"].append(cls_index)
|
|
@@ -152,19 +151,16 @@ def fine_tune_cuad_model():
|
|
| 152 |
tokenized_examples["start_positions"].append(cls_index)
|
| 153 |
tokenized_examples["end_positions"].append(cls_index)
|
| 154 |
else:
|
| 155 |
-
# Move tokenized_start_index to the first token after start_char
|
| 156 |
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
|
| 157 |
tokenized_start_index += 1
|
| 158 |
safe_start = tokenized_start_index - 1 if tokenized_start_index > 0 else cls_index
|
| 159 |
tokenized_examples["start_positions"].append(safe_start)
|
| 160 |
-
# Move tokenized_end_index backwards to the last token before end_char
|
| 161 |
while tokenized_end_index >= 0 and offsets[tokenized_end_index][1] >= end_char:
|
| 162 |
tokenized_end_index -= 1
|
| 163 |
safe_end = tokenized_end_index + 1 if tokenized_end_index < len(offsets) - 1 else cls_index
|
| 164 |
tokenized_examples["end_positions"].append(safe_end)
|
| 165 |
return tokenized_examples
|
| 166 |
|
| 167 |
-
print("✅ Tokenizing dataset...")
|
| 168 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
| 169 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
| 170 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
|
@@ -205,57 +201,74 @@ def fine_tune_cuad_model():
|
|
| 205 |
#############################
|
| 206 |
|
| 207 |
try:
|
|
|
|
| 208 |
try:
|
| 209 |
nlp = spacy.load("en_core_web_sm")
|
| 210 |
except Exception:
|
| 211 |
spacy.cli.download("en_core_web_sm")
|
| 212 |
nlp = spacy.load("en_core_web_sm")
|
| 213 |
-
print("✅
|
| 214 |
|
| 215 |
-
#
|
| 216 |
summarizer = pipeline(
|
| 217 |
"summarization",
|
| 218 |
model="facebook/bart-large-cnn",
|
| 219 |
tokenizer="facebook/bart-large-cnn",
|
| 220 |
-
device=0 if
|
| 221 |
)
|
| 222 |
-
# Commenting out FP16 conversion to avoid potential issues
|
| 223 |
-
# if device == "cuda":
|
| 224 |
-
# try:
|
| 225 |
-
# summarizer.model.half()
|
| 226 |
-
# except Exception as e:
|
| 227 |
-
# print("FP16 conversion failed:", e)
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
|
| 232 |
-
device_map="auto" if
|
|
|
|
|
|
|
| 233 |
if os.path.exists("fine_tuned_legal_qa"):
|
| 234 |
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
| 235 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
| 236 |
from transformers import AutoModelForQuestionAnswering
|
| 237 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
| 238 |
cuad_model.to(device)
|
| 239 |
-
# Commenting out FP16 conversion for cuad_model as well
|
| 240 |
-
# if device == "cuda":
|
| 241 |
-
# cuad_model.half()
|
| 242 |
else:
|
| 243 |
-
print("⚠️ Fine-tuned QA model not found.
|
| 244 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
| 245 |
cuad_model.to(device)
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
except Exception as e:
|
| 248 |
print(f"⚠️ Error loading models: {str(e)}")
|
| 249 |
raise RuntimeError(f"Error loading models: {str(e)}")
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
|
| 255 |
def legal_chatbot(user_input, context):
|
| 256 |
global chat_history
|
| 257 |
chat_history.append({"role": "user", "content": user_input})
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
| 259 |
chat_history.append({"role": "assistant", "content": response})
|
| 260 |
return response
|
| 261 |
|
|
@@ -268,6 +281,9 @@ def extract_text_from_pdf(pdf_file):
|
|
| 268 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
| 269 |
|
| 270 |
async def process_video_to_text(video_file_path):
|
|
|
|
|
|
|
|
|
|
| 271 |
try:
|
| 272 |
print(f"Processing video file at {video_file_path}")
|
| 273 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
|
@@ -289,6 +305,9 @@ async def process_video_to_text(video_file_path):
|
|
| 289 |
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
| 290 |
|
| 291 |
async def process_audio_to_text(audio_file_path):
|
|
|
|
|
|
|
|
|
|
| 292 |
try:
|
| 293 |
print(f"Processing audio file at {audio_file_path}")
|
| 294 |
result = await run_in_threadpool(speech_to_text, audio_file_path)
|
|
@@ -300,6 +319,9 @@ async def process_audio_to_text(audio_file_path):
|
|
| 300 |
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
| 301 |
|
| 302 |
def extract_named_entities(text):
|
|
|
|
|
|
|
|
|
|
| 303 |
max_length = 10000
|
| 304 |
entities = []
|
| 305 |
for i in range(0, len(text), max_length):
|
|
@@ -308,9 +330,9 @@ def extract_named_entities(text):
|
|
| 308 |
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
|
| 309 |
return entities
|
| 310 |
|
| 311 |
-
|
| 312 |
-
#
|
| 313 |
-
|
| 314 |
|
| 315 |
def analyze_sentiment(text):
|
| 316 |
sentences = [sent.text for sent in nlp(text).sents]
|
|
@@ -337,11 +359,9 @@ def get_enhanced_context_info(text):
|
|
| 337 |
enhanced["topics"] = analyze_topics(text, num_topics=5)
|
| 338 |
return enhanced
|
| 339 |
|
| 340 |
-
# New function to create a detailed, dynamic explanation for each topic
|
| 341 |
def explain_topics(topics):
|
| 342 |
explanation = {}
|
| 343 |
for topic_idx, topic_str in topics:
|
| 344 |
-
# Split topic string into individual weighted terms
|
| 345 |
parts = topic_str.split('+')
|
| 346 |
terms = []
|
| 347 |
for part in parts:
|
|
@@ -353,22 +373,23 @@ def explain_topics(topics):
|
|
| 353 |
weight = float(weight_str)
|
| 354 |
except:
|
| 355 |
weight = 0.0
|
| 356 |
-
# Filter out
|
| 357 |
if word.lower() not in STOP_WORDS and len(word) > 1:
|
| 358 |
terms.append((weight, word))
|
| 359 |
terms.sort(key=lambda x: -x[0])
|
| 360 |
-
#
|
| 361 |
if terms:
|
| 362 |
-
if any("liability" in
|
| 363 |
label = "Liability & Penalty Risk"
|
| 364 |
-
elif any("termination" in
|
| 365 |
label = "Termination & Refund Risk"
|
| 366 |
-
elif any("compliance" in
|
| 367 |
label = "Compliance & Regulatory Risk"
|
| 368 |
else:
|
| 369 |
label = "General Risk Language"
|
| 370 |
else:
|
| 371 |
label = "General Risk Language"
|
|
|
|
| 372 |
explanation_text = (
|
| 373 |
f"Topic {topic_idx} ({label}) is characterized by dominant terms: " +
|
| 374 |
", ".join([f"'{word}' ({weight:.3f})" for weight, word in terms[:5]])
|
|
@@ -393,10 +414,42 @@ def analyze_risk_enhanced(text):
|
|
| 393 |
"topics_explanation": topics_explanation
|
| 394 |
}
|
| 395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
def analyze_contract_clauses(text):
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
try:
|
| 401 |
clause_types = list(cuad_model.config.id2label.values())
|
| 402 |
except Exception:
|
|
@@ -406,60 +459,105 @@ def analyze_contract_clauses(text):
|
|
| 406 |
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
|
| 407 |
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
|
| 408 |
]
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
|
|
|
|
|
|
| 414 |
try:
|
|
|
|
| 415 |
tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
|
| 416 |
inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
|
| 417 |
-
# Check
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
print(f"Skipping chunk due to invalid token id: {max_token}")
|
| 421 |
continue
|
|
|
|
| 422 |
with torch.no_grad():
|
| 423 |
outputs = cuad_model(**inputs)
|
| 424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
|
| 426 |
-
print("Mismatch in logits shape
|
| 427 |
continue
|
|
|
|
|
|
|
| 428 |
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
|
| 429 |
for idx, confidence in enumerate(predictions):
|
| 430 |
if confidence > 0.5 and idx < len(clause_types):
|
| 431 |
-
clauses_detected.append({
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
except Exception as e:
|
| 433 |
print(f"Error processing chunk: {e}")
|
|
|
|
|
|
|
|
|
|
| 434 |
continue
|
|
|
|
|
|
|
| 435 |
aggregated_clauses = {}
|
| 436 |
for clause in clauses_detected:
|
| 437 |
-
|
| 438 |
-
if
|
| 439 |
-
aggregated_clauses[
|
|
|
|
| 440 |
return list(aggregated_clauses.values())
|
| 441 |
|
| 442 |
-
|
| 443 |
-
#
|
| 444 |
-
|
| 445 |
|
| 446 |
@app.post("/analyze_legal_document")
|
| 447 |
async def analyze_legal_document(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
try:
|
| 449 |
content = await file.read()
|
| 450 |
file_hash = compute_md5(content)
|
|
|
|
|
|
|
| 451 |
if file_hash in analysis_cache:
|
| 452 |
return analysis_cache[file_hash]
|
|
|
|
|
|
|
| 453 |
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
|
| 454 |
if not text:
|
| 455 |
return {"status": "error", "message": "No valid text found in the document."}
|
|
|
|
|
|
|
| 456 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 457 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
entities = extract_named_entities(text)
|
|
|
|
|
|
|
| 459 |
risk_analysis = analyze_risk_enhanced(text)
|
|
|
|
|
|
|
| 460 |
clauses = analyze_contract_clauses(text)
|
|
|
|
|
|
|
| 461 |
generated_task_id = str(uuid.uuid4())
|
| 462 |
store_document_context(generated_task_id, text)
|
|
|
|
| 463 |
result = {
|
| 464 |
"status": "success",
|
| 465 |
"task_id": generated_task_id,
|
|
@@ -468,36 +566,65 @@ async def analyze_legal_document(file: UploadFile = File(...)):
|
|
| 468 |
"risk_analysis": risk_analysis,
|
| 469 |
"clauses_detected": clauses
|
| 470 |
}
|
|
|
|
|
|
|
| 471 |
analysis_cache[file_hash] = result
|
| 472 |
return result
|
|
|
|
| 473 |
except Exception as e:
|
| 474 |
return {"status": "error", "message": str(e)}
|
| 475 |
|
| 476 |
@app.post("/analyze_legal_video")
|
| 477 |
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
|
|
|
|
|
|
|
|
|
| 478 |
try:
|
| 479 |
content = await file.read()
|
| 480 |
file_hash = compute_md5(content)
|
| 481 |
if file_hash in analysis_cache:
|
| 482 |
return analysis_cache[file_hash]
|
|
|
|
|
|
|
| 483 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 484 |
temp_file.write(content)
|
| 485 |
temp_file_path = temp_file.name
|
|
|
|
|
|
|
| 486 |
text = await process_video_to_text(temp_file_path)
|
|
|
|
|
|
|
| 487 |
if os.path.exists(temp_file_path):
|
| 488 |
os.remove(temp_file_path)
|
|
|
|
| 489 |
if not text:
|
| 490 |
return {"status": "error", "message": "No speech could be transcribed from the video."}
|
|
|
|
|
|
|
| 491 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 492 |
with open(transcript_path, "w") as f:
|
| 493 |
f.write(text)
|
|
|
|
|
|
|
| 494 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
entities = extract_named_entities(text)
|
| 497 |
risk_analysis = analyze_risk_enhanced(text)
|
| 498 |
clauses = analyze_contract_clauses(text)
|
|
|
|
|
|
|
| 499 |
generated_task_id = str(uuid.uuid4())
|
| 500 |
store_document_context(generated_task_id, text)
|
|
|
|
| 501 |
result = {
|
| 502 |
"status": "success",
|
| 503 |
"task_id": generated_task_id,
|
|
@@ -515,29 +642,55 @@ async def analyze_legal_video(file: UploadFile = File(...), background_tasks: Ba
|
|
| 515 |
|
| 516 |
@app.post("/analyze_legal_audio")
|
| 517 |
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
|
|
|
|
|
|
|
|
|
| 518 |
try:
|
| 519 |
content = await file.read()
|
| 520 |
file_hash = compute_md5(content)
|
| 521 |
if file_hash in analysis_cache:
|
| 522 |
return analysis_cache[file_hash]
|
|
|
|
|
|
|
| 523 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 524 |
temp_file.write(content)
|
| 525 |
temp_file_path = temp_file.name
|
|
|
|
|
|
|
| 526 |
text = await process_audio_to_text(temp_file_path)
|
|
|
|
|
|
|
| 527 |
if os.path.exists(temp_file_path):
|
| 528 |
os.remove(temp_file_path)
|
|
|
|
| 529 |
if not text:
|
| 530 |
return {"status": "error", "message": "No speech could be transcribed from the audio."}
|
|
|
|
|
|
|
| 531 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 532 |
with open(transcript_path, "w") as f:
|
| 533 |
f.write(text)
|
|
|
|
|
|
|
| 534 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 535 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
entities = extract_named_entities(text)
|
| 537 |
risk_analysis = analyze_risk_enhanced(text)
|
| 538 |
clauses = analyze_contract_clauses(text)
|
|
|
|
|
|
|
| 539 |
generated_task_id = str(uuid.uuid4())
|
| 540 |
store_document_context(generated_task_id, text)
|
|
|
|
| 541 |
result = {
|
| 542 |
"status": "success",
|
| 543 |
"task_id": generated_task_id,
|
|
@@ -563,6 +716,9 @@ async def get_transcript(transcript_id: str):
|
|
| 563 |
|
| 564 |
@app.post("/legal_chatbot")
|
| 565 |
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
|
|
|
|
|
|
|
|
|
|
| 566 |
document_context = load_document_context(task_id)
|
| 567 |
if not document_context:
|
| 568 |
return {"response": "⚠️ No relevant document found for this task ID."}
|
|
@@ -606,10 +762,7 @@ def setup_ngrok():
|
|
| 606 |
print(f"⚠️ Ngrok setup error: {e}")
|
| 607 |
return None
|
| 608 |
|
| 609 |
-
#
|
| 610 |
-
# Clause Visualization Endpoints
|
| 611 |
-
# ------------------------------
|
| 612 |
-
|
| 613 |
@app.get("/download_clause_bar_chart")
|
| 614 |
async def download_clause_bar_chart(task_id: str):
|
| 615 |
try:
|
|
@@ -673,6 +826,7 @@ async def download_clause_radar_chart(task_id: str):
|
|
| 673 |
raise HTTPException(status_code=404, detail="No clauses detected.")
|
| 674 |
labels = [c["type"] for c in clauses]
|
| 675 |
values = [c["confidence"] for c in clauses]
|
|
|
|
| 676 |
labels += labels[:1]
|
| 677 |
values += values[:1]
|
| 678 |
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
|
|
@@ -700,3 +854,4 @@ if __name__ == "__main__":
|
|
| 700 |
else:
|
| 701 |
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
|
| 702 |
run()
|
|
|
|
|
|
| 28 |
# For asynchronous blocking calls
|
| 29 |
from starlette.concurrency import run_in_threadpool
|
| 30 |
|
| 31 |
+
# Gensim for topic modeling
|
| 32 |
import gensim
|
| 33 |
from gensim import corpora, models
|
| 34 |
|
| 35 |
+
# Spacy stop words
|
| 36 |
from spacy.lang.en.stop_words import STOP_WORDS
|
| 37 |
|
| 38 |
# Global cache for analysis results based on file hash
|
|
|
|
| 43 |
from google.colab import drive
|
| 44 |
drive.mount('/content/drive')
|
| 45 |
except Exception:
|
| 46 |
+
pass # Not in Colab
|
| 47 |
|
| 48 |
+
# Make sure directories exist
|
| 49 |
os.makedirs("static", exist_ok=True)
|
| 50 |
os.makedirs("temp", exist_ok=True)
|
| 51 |
|
| 52 |
+
# Use GPU if available
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
|
| 55 |
+
# FastAPI setup
|
| 56 |
app = FastAPI(title="Legal Document and Video Analyzer")
|
| 57 |
|
| 58 |
+
# CORS
|
| 59 |
app.add_middleware(
|
| 60 |
CORSMiddleware,
|
| 61 |
allow_origins=["*"],
|
|
|
|
| 64 |
allow_headers=["*"],
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# In-memory storage
|
| 68 |
document_storage = {}
|
| 69 |
chat_history = []
|
| 70 |
|
|
|
|
| 71 |
def store_document_context(task_id, text):
|
| 72 |
document_storage[task_id] = text
|
| 73 |
return True
|
| 74 |
|
|
|
|
| 75 |
def load_document_context(task_id):
|
| 76 |
return document_storage.get(task_id, "")
|
| 77 |
|
|
|
|
| 78 |
def compute_md5(content: bytes) -> str:
|
| 79 |
return hashlib.md5(content).hexdigest()
|
| 80 |
|
| 81 |
#############################
|
| 82 |
+
# Fine-tuning on CUAD QA #
|
| 83 |
#############################
|
| 84 |
|
| 85 |
def fine_tune_cuad_model():
|
| 86 |
+
"""
|
| 87 |
+
Minimal stub for fine-tuning the CUAD QA model.
|
| 88 |
+
If you have a full fine-tuning script, place it here.
|
| 89 |
+
"""
|
| 90 |
from datasets import load_dataset
|
| 91 |
+
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
|
|
|
|
| 92 |
|
| 93 |
print("✅ Loading CUAD dataset for fine tuning...")
|
| 94 |
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
|
|
|
|
| 144 |
tokenized_end_index = len(input_ids) - 1
|
| 145 |
while tokenized_end_index >= 0 and sequence_ids[tokenized_end_index] != 1:
|
| 146 |
tokenized_end_index -= 1
|
|
|
|
| 147 |
if tokenized_start_index >= len(offsets) or tokenized_end_index < 0:
|
| 148 |
tokenized_examples["start_positions"].append(cls_index)
|
| 149 |
tokenized_examples["end_positions"].append(cls_index)
|
|
|
|
| 151 |
tokenized_examples["start_positions"].append(cls_index)
|
| 152 |
tokenized_examples["end_positions"].append(cls_index)
|
| 153 |
else:
|
|
|
|
| 154 |
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
|
| 155 |
tokenized_start_index += 1
|
| 156 |
safe_start = tokenized_start_index - 1 if tokenized_start_index > 0 else cls_index
|
| 157 |
tokenized_examples["start_positions"].append(safe_start)
|
|
|
|
| 158 |
while tokenized_end_index >= 0 and offsets[tokenized_end_index][1] >= end_char:
|
| 159 |
tokenized_end_index -= 1
|
| 160 |
safe_end = tokenized_end_index + 1 if tokenized_end_index < len(offsets) - 1 else cls_index
|
| 161 |
tokenized_examples["end_positions"].append(safe_end)
|
| 162 |
return tokenized_examples
|
| 163 |
|
|
|
|
| 164 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
| 165 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
| 166 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
|
|
|
| 201 |
#############################
|
| 202 |
|
| 203 |
try:
|
| 204 |
+
# Load spacy
|
| 205 |
try:
|
| 206 |
nlp = spacy.load("en_core_web_sm")
|
| 207 |
except Exception:
|
| 208 |
spacy.cli.download("en_core_web_sm")
|
| 209 |
nlp = spacy.load("en_core_web_sm")
|
| 210 |
+
print("✅ Loaded spaCy model.")
|
| 211 |
|
| 212 |
+
# Summarizer (GPU)
|
| 213 |
summarizer = pipeline(
|
| 214 |
"summarization",
|
| 215 |
model="facebook/bart-large-cnn",
|
| 216 |
tokenizer="facebook/bart-large-cnn",
|
| 217 |
+
device=0 if device == "cuda" else -1
|
| 218 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
# QA pipeline (GPU)
|
| 221 |
+
qa_model = pipeline(
|
| 222 |
+
"question-answering",
|
| 223 |
+
model="deepset/roberta-base-squad2",
|
| 224 |
+
device=0 if device == "cuda" else -1
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# Embeddings (GPU if available)
|
| 228 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
| 229 |
+
|
| 230 |
+
# Named Entity Recognition (GPU)
|
| 231 |
+
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1)
|
| 232 |
+
|
| 233 |
+
# Speech-to-text (GPU if available via device_map="auto")
|
| 234 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
|
| 235 |
+
device_map="auto" if device == "cuda" else None)
|
| 236 |
+
|
| 237 |
+
# Fine-tuned CUAD QA
|
| 238 |
if os.path.exists("fine_tuned_legal_qa"):
|
| 239 |
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
| 240 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
| 241 |
from transformers import AutoModelForQuestionAnswering
|
| 242 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
| 243 |
cuad_model.to(device)
|
|
|
|
|
|
|
|
|
|
| 244 |
else:
|
| 245 |
+
print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may be slow).")
|
| 246 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
| 247 |
cuad_model.to(device)
|
| 248 |
+
|
| 249 |
+
# Sentiment (GPU)
|
| 250 |
+
sentiment_pipeline = pipeline(
|
| 251 |
+
"sentiment-analysis",
|
| 252 |
+
model="distilbert-base-uncased-finetuned-sst-2-english",
|
| 253 |
+
device=0 if device == "cuda" else -1
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
print("✅ All models loaded successfully.")
|
| 257 |
except Exception as e:
|
| 258 |
print(f"⚠️ Error loading models: {str(e)}")
|
| 259 |
raise RuntimeError(f"Error loading models: {str(e)}")
|
| 260 |
|
| 261 |
+
#############################
|
| 262 |
+
# Helper Functions #
|
| 263 |
+
#############################
|
| 264 |
|
| 265 |
def legal_chatbot(user_input, context):
|
| 266 |
global chat_history
|
| 267 |
chat_history.append({"role": "user", "content": user_input})
|
| 268 |
+
try:
|
| 269 |
+
response = qa_model(question=user_input, context=context)["answer"]
|
| 270 |
+
except Exception as e:
|
| 271 |
+
response = f"Error processing query: {e}"
|
| 272 |
chat_history.append({"role": "assistant", "content": response})
|
| 273 |
return response
|
| 274 |
|
|
|
|
| 281 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
| 282 |
|
| 283 |
async def process_video_to_text(video_file_path):
|
| 284 |
+
"""
|
| 285 |
+
Extracts audio from video and runs speech-to-text.
|
| 286 |
+
"""
|
| 287 |
try:
|
| 288 |
print(f"Processing video file at {video_file_path}")
|
| 289 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
|
|
|
| 305 |
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
| 306 |
|
| 307 |
async def process_audio_to_text(audio_file_path):
|
| 308 |
+
"""
|
| 309 |
+
Runs speech-to-text on an audio file.
|
| 310 |
+
"""
|
| 311 |
try:
|
| 312 |
print(f"Processing audio file at {audio_file_path}")
|
| 313 |
result = await run_in_threadpool(speech_to_text, audio_file_path)
|
|
|
|
| 319 |
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
| 320 |
|
| 321 |
def extract_named_entities(text):
|
| 322 |
+
"""
|
| 323 |
+
Splits text into manageable chunks, runs spaCy for entity extraction.
|
| 324 |
+
"""
|
| 325 |
max_length = 10000
|
| 326 |
entities = []
|
| 327 |
for i in range(0, len(text), max_length):
|
|
|
|
| 330 |
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
|
| 331 |
return entities
|
| 332 |
|
| 333 |
+
#############################
|
| 334 |
+
# Risk & Topic Analysis #
|
| 335 |
+
#############################
|
| 336 |
|
| 337 |
def analyze_sentiment(text):
|
| 338 |
sentences = [sent.text for sent in nlp(text).sents]
|
|
|
|
| 359 |
enhanced["topics"] = analyze_topics(text, num_topics=5)
|
| 360 |
return enhanced
|
| 361 |
|
|
|
|
| 362 |
def explain_topics(topics):
|
| 363 |
explanation = {}
|
| 364 |
for topic_idx, topic_str in topics:
|
|
|
|
| 365 |
parts = topic_str.split('+')
|
| 366 |
terms = []
|
| 367 |
for part in parts:
|
|
|
|
| 373 |
weight = float(weight_str)
|
| 374 |
except:
|
| 375 |
weight = 0.0
|
| 376 |
+
# Filter out short words & stop words
|
| 377 |
if word.lower() not in STOP_WORDS and len(word) > 1:
|
| 378 |
terms.append((weight, word))
|
| 379 |
terms.sort(key=lambda x: -x[0])
|
| 380 |
+
# Heuristic labeling
|
| 381 |
if terms:
|
| 382 |
+
if any("liability" in w.lower() for _, w in terms):
|
| 383 |
label = "Liability & Penalty Risk"
|
| 384 |
+
elif any("termination" in w.lower() for _, w in terms):
|
| 385 |
label = "Termination & Refund Risk"
|
| 386 |
+
elif any("compliance" in w.lower() for _, w in terms):
|
| 387 |
label = "Compliance & Regulatory Risk"
|
| 388 |
else:
|
| 389 |
label = "General Risk Language"
|
| 390 |
else:
|
| 391 |
label = "General Risk Language"
|
| 392 |
+
|
| 393 |
explanation_text = (
|
| 394 |
f"Topic {topic_idx} ({label}) is characterized by dominant terms: " +
|
| 395 |
", ".join([f"'{word}' ({weight:.3f})" for weight, word in terms[:5]])
|
|
|
|
| 414 |
"topics_explanation": topics_explanation
|
| 415 |
}
|
| 416 |
|
| 417 |
+
#############################
|
| 418 |
+
# Clause Detection (GPU) #
|
| 419 |
+
#############################
|
| 420 |
+
|
| 421 |
+
def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
|
| 422 |
+
"""
|
| 423 |
+
Convert the entire text into tokens once, then create overlapping chunks
|
| 424 |
+
of up to `max_chunk_len` tokens with overlap `stride`.
|
| 425 |
+
"""
|
| 426 |
+
# Encode text once
|
| 427 |
+
encoded = tokenizer(text, add_special_tokens=False)
|
| 428 |
+
input_ids = encoded["input_ids"]
|
| 429 |
+
# We'll create overlapping windows of tokens
|
| 430 |
+
chunks = []
|
| 431 |
+
idx = 0
|
| 432 |
+
while idx < len(input_ids):
|
| 433 |
+
end = idx + max_chunk_len
|
| 434 |
+
sub_ids = input_ids[idx:end]
|
| 435 |
+
# Convert back to text
|
| 436 |
+
chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True)
|
| 437 |
+
chunks.append(chunk_text)
|
| 438 |
+
if end >= len(input_ids):
|
| 439 |
+
break
|
| 440 |
+
idx = end - stride
|
| 441 |
+
if idx < 0:
|
| 442 |
+
idx = 0
|
| 443 |
+
return chunks
|
| 444 |
+
|
| 445 |
def analyze_contract_clauses(text):
|
| 446 |
+
"""
|
| 447 |
+
Token-based chunking to avoid partial tokens.
|
| 448 |
+
Each chunk is fed into the fine-tuned CUAD model on GPU.
|
| 449 |
+
"""
|
| 450 |
+
# We'll break the text into chunks of up to 384 tokens, with a stride of 128
|
| 451 |
+
text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128)
|
| 452 |
+
|
| 453 |
try:
|
| 454 |
clause_types = list(cuad_model.config.id2label.values())
|
| 455 |
except Exception:
|
|
|
|
| 459 |
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
|
| 460 |
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
|
| 461 |
]
|
| 462 |
+
|
| 463 |
+
clauses_detected = []
|
| 464 |
+
|
| 465 |
+
for chunk in text_chunks:
|
| 466 |
+
chunk = chunk.strip()
|
| 467 |
+
if not chunk:
|
| 468 |
+
continue
|
| 469 |
try:
|
| 470 |
+
# Tokenize the chunk again for the model
|
| 471 |
tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
|
| 472 |
inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
|
| 473 |
+
# Check for invalid token IDs
|
| 474 |
+
if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size):
|
| 475 |
+
print("Invalid token id found; skipping chunk")
|
|
|
|
| 476 |
continue
|
| 477 |
+
|
| 478 |
with torch.no_grad():
|
| 479 |
outputs = cuad_model(**inputs)
|
| 480 |
+
# Force synchronization so that if there's a device error, we catch it here
|
| 481 |
+
if device == "cuda":
|
| 482 |
+
torch.cuda.synchronize()
|
| 483 |
+
|
| 484 |
+
# Shape check
|
| 485 |
if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
|
| 486 |
+
print("Mismatch in logits shape; skipping chunk")
|
| 487 |
continue
|
| 488 |
+
|
| 489 |
+
# For demonstration, we just apply a threshold to the start_logits
|
| 490 |
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
|
| 491 |
for idx, confidence in enumerate(predictions):
|
| 492 |
if confidence > 0.5 and idx < len(clause_types):
|
| 493 |
+
clauses_detected.append({
|
| 494 |
+
"type": clause_types[idx],
|
| 495 |
+
"confidence": float(confidence)
|
| 496 |
+
})
|
| 497 |
+
|
| 498 |
except Exception as e:
|
| 499 |
print(f"Error processing chunk: {e}")
|
| 500 |
+
# Clear GPU cache if there's an error
|
| 501 |
+
if device == "cuda":
|
| 502 |
+
torch.cuda.empty_cache()
|
| 503 |
continue
|
| 504 |
+
|
| 505 |
+
# Aggregate clauses by their highest confidence
|
| 506 |
aggregated_clauses = {}
|
| 507 |
for clause in clauses_detected:
|
| 508 |
+
ctype = clause["type"]
|
| 509 |
+
if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]:
|
| 510 |
+
aggregated_clauses[ctype] = clause
|
| 511 |
+
|
| 512 |
return list(aggregated_clauses.values())
|
| 513 |
|
| 514 |
+
#############################
|
| 515 |
+
# Endpoints #
|
| 516 |
+
#############################
|
| 517 |
|
| 518 |
@app.post("/analyze_legal_document")
|
| 519 |
async def analyze_legal_document(file: UploadFile = File(...)):
|
| 520 |
+
"""
|
| 521 |
+
Analyze a legal document (PDF). Extract text, summarize, detect entities,
|
| 522 |
+
do risk analysis, detect clauses, and store context for chat.
|
| 523 |
+
"""
|
| 524 |
try:
|
| 525 |
content = await file.read()
|
| 526 |
file_hash = compute_md5(content)
|
| 527 |
+
|
| 528 |
+
# Return cached result if we've already processed this file
|
| 529 |
if file_hash in analysis_cache:
|
| 530 |
return analysis_cache[file_hash]
|
| 531 |
+
|
| 532 |
+
# Extract text
|
| 533 |
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
|
| 534 |
if not text:
|
| 535 |
return {"status": "error", "message": "No valid text found in the document."}
|
| 536 |
+
|
| 537 |
+
# Summarize (handle short documents gracefully)
|
| 538 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 539 |
+
try:
|
| 540 |
+
if len(text) > 100:
|
| 541 |
+
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
|
| 542 |
+
else:
|
| 543 |
+
summary = "Document too short for a meaningful summary."
|
| 544 |
+
except Exception as e:
|
| 545 |
+
summary = "Summarization failed due to an error."
|
| 546 |
+
print(f"Summarization error: {e}")
|
| 547 |
+
|
| 548 |
+
# Extract named entities
|
| 549 |
entities = extract_named_entities(text)
|
| 550 |
+
|
| 551 |
+
# Analyze risk
|
| 552 |
risk_analysis = analyze_risk_enhanced(text)
|
| 553 |
+
|
| 554 |
+
# Detect clauses
|
| 555 |
clauses = analyze_contract_clauses(text)
|
| 556 |
+
|
| 557 |
+
# Store the document context for chatbot
|
| 558 |
generated_task_id = str(uuid.uuid4())
|
| 559 |
store_document_context(generated_task_id, text)
|
| 560 |
+
|
| 561 |
result = {
|
| 562 |
"status": "success",
|
| 563 |
"task_id": generated_task_id,
|
|
|
|
| 566 |
"risk_analysis": risk_analysis,
|
| 567 |
"clauses_detected": clauses
|
| 568 |
}
|
| 569 |
+
|
| 570 |
+
# Cache it
|
| 571 |
analysis_cache[file_hash] = result
|
| 572 |
return result
|
| 573 |
+
|
| 574 |
except Exception as e:
|
| 575 |
return {"status": "error", "message": str(e)}
|
| 576 |
|
| 577 |
@app.post("/analyze_legal_video")
|
| 578 |
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
| 579 |
+
"""
|
| 580 |
+
Analyze a legal video: transcribe, summarize, detect entities, risk analysis, etc.
|
| 581 |
+
"""
|
| 582 |
try:
|
| 583 |
content = await file.read()
|
| 584 |
file_hash = compute_md5(content)
|
| 585 |
if file_hash in analysis_cache:
|
| 586 |
return analysis_cache[file_hash]
|
| 587 |
+
|
| 588 |
+
# Save video temporarily
|
| 589 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 590 |
temp_file.write(content)
|
| 591 |
temp_file_path = temp_file.name
|
| 592 |
+
|
| 593 |
+
# Transcribe
|
| 594 |
text = await process_video_to_text(temp_file_path)
|
| 595 |
+
|
| 596 |
+
# Cleanup
|
| 597 |
if os.path.exists(temp_file_path):
|
| 598 |
os.remove(temp_file_path)
|
| 599 |
+
|
| 600 |
if not text:
|
| 601 |
return {"status": "error", "message": "No speech could be transcribed from the video."}
|
| 602 |
+
|
| 603 |
+
# Save transcript
|
| 604 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 605 |
with open(transcript_path, "w") as f:
|
| 606 |
f.write(text)
|
| 607 |
+
|
| 608 |
+
# Summarize
|
| 609 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 610 |
+
try:
|
| 611 |
+
if len(text) > 100:
|
| 612 |
+
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
|
| 613 |
+
else:
|
| 614 |
+
summary = "Transcript too short for meaningful summarization."
|
| 615 |
+
except Exception as e:
|
| 616 |
+
summary = "Summarization failed due to an error."
|
| 617 |
+
print(f"Summarization error: {e}")
|
| 618 |
+
|
| 619 |
+
# Entities, risk, clauses
|
| 620 |
entities = extract_named_entities(text)
|
| 621 |
risk_analysis = analyze_risk_enhanced(text)
|
| 622 |
clauses = analyze_contract_clauses(text)
|
| 623 |
+
|
| 624 |
+
# Store context
|
| 625 |
generated_task_id = str(uuid.uuid4())
|
| 626 |
store_document_context(generated_task_id, text)
|
| 627 |
+
|
| 628 |
result = {
|
| 629 |
"status": "success",
|
| 630 |
"task_id": generated_task_id,
|
|
|
|
| 642 |
|
| 643 |
@app.post("/analyze_legal_audio")
|
| 644 |
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
| 645 |
+
"""
|
| 646 |
+
Analyze an audio file: transcribe, summarize, detect entities, risk analysis, etc.
|
| 647 |
+
"""
|
| 648 |
try:
|
| 649 |
content = await file.read()
|
| 650 |
file_hash = compute_md5(content)
|
| 651 |
if file_hash in analysis_cache:
|
| 652 |
return analysis_cache[file_hash]
|
| 653 |
+
|
| 654 |
+
# Save audio temporarily
|
| 655 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 656 |
temp_file.write(content)
|
| 657 |
temp_file_path = temp_file.name
|
| 658 |
+
|
| 659 |
+
# Transcribe
|
| 660 |
text = await process_audio_to_text(temp_file_path)
|
| 661 |
+
|
| 662 |
+
# Cleanup
|
| 663 |
if os.path.exists(temp_file_path):
|
| 664 |
os.remove(temp_file_path)
|
| 665 |
+
|
| 666 |
if not text:
|
| 667 |
return {"status": "error", "message": "No speech could be transcribed from the audio."}
|
| 668 |
+
|
| 669 |
+
# Save transcript
|
| 670 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 671 |
with open(transcript_path, "w") as f:
|
| 672 |
f.write(text)
|
| 673 |
+
|
| 674 |
+
# Summarize
|
| 675 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 676 |
+
try:
|
| 677 |
+
if len(text) > 100:
|
| 678 |
+
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
|
| 679 |
+
else:
|
| 680 |
+
summary = "Transcript too short for meaningful summarization."
|
| 681 |
+
except Exception as e:
|
| 682 |
+
summary = "Summarization failed due to an error."
|
| 683 |
+
print(f"Summarization error: {e}")
|
| 684 |
+
|
| 685 |
+
# Entities, risk, clauses
|
| 686 |
entities = extract_named_entities(text)
|
| 687 |
risk_analysis = analyze_risk_enhanced(text)
|
| 688 |
clauses = analyze_contract_clauses(text)
|
| 689 |
+
|
| 690 |
+
# Store context
|
| 691 |
generated_task_id = str(uuid.uuid4())
|
| 692 |
store_document_context(generated_task_id, text)
|
| 693 |
+
|
| 694 |
result = {
|
| 695 |
"status": "success",
|
| 696 |
"task_id": generated_task_id,
|
|
|
|
| 716 |
|
| 717 |
@app.post("/legal_chatbot")
|
| 718 |
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
|
| 719 |
+
"""
|
| 720 |
+
Simple QA pipeline on the stored document context.
|
| 721 |
+
"""
|
| 722 |
document_context = load_document_context(task_id)
|
| 723 |
if not document_context:
|
| 724 |
return {"response": "⚠️ No relevant document found for this task ID."}
|
|
|
|
| 762 |
print(f"⚠️ Ngrok setup error: {e}")
|
| 763 |
return None
|
| 764 |
|
| 765 |
+
# Visualization endpoints
|
|
|
|
|
|
|
|
|
|
| 766 |
@app.get("/download_clause_bar_chart")
|
| 767 |
async def download_clause_bar_chart(task_id: str):
|
| 768 |
try:
|
|
|
|
| 826 |
raise HTTPException(status_code=404, detail="No clauses detected.")
|
| 827 |
labels = [c["type"] for c in clauses]
|
| 828 |
values = [c["confidence"] for c in clauses]
|
| 829 |
+
# close the loop for radar
|
| 830 |
labels += labels[:1]
|
| 831 |
values += values[:1]
|
| 832 |
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
|
|
|
|
| 854 |
else:
|
| 855 |
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
|
| 856 |
run()
|
| 857 |
+
|