Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import os
|
| 2 |
os.environ["TRANSFORMERS_NO_FAST"] = "1" # Force use of slow tokenizers
|
| 3 |
-
|
| 4 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
| 5 |
|
| 6 |
import io
|
|
@@ -126,7 +125,10 @@ def fine_tune_cuad_model():
|
|
| 126 |
tokenized_examples["end_positions"] = []
|
| 127 |
for i, offsets in enumerate(offset_mapping):
|
| 128 |
input_ids = tokenized_examples["input_ids"][i]
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
sequence_ids = tokenized_examples.sequence_ids(i)
|
| 131 |
sample_index = sample_mapping[i]
|
| 132 |
answers = examples["answers"][sample_index]
|
|
@@ -137,21 +139,29 @@ def fine_tune_cuad_model():
|
|
| 137 |
start_char = answers["answer_start"][0]
|
| 138 |
end_char = start_char + len(answers["text"][0])
|
| 139 |
tokenized_start_index = 0
|
| 140 |
-
while sequence_ids[tokenized_start_index] != 1:
|
| 141 |
tokenized_start_index += 1
|
| 142 |
tokenized_end_index = len(input_ids) - 1
|
| 143 |
-
while sequence_ids[tokenized_end_index] != 1:
|
| 144 |
tokenized_end_index -= 1
|
| 145 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
tokenized_examples["start_positions"].append(cls_index)
|
| 147 |
tokenized_examples["end_positions"].append(cls_index)
|
| 148 |
else:
|
|
|
|
| 149 |
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
|
| 150 |
tokenized_start_index += 1
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
tokenized_end_index -= 1
|
| 154 |
-
|
|
|
|
| 155 |
return tokenized_examples
|
| 156 |
|
| 157 |
print("✅ Tokenizing dataset...")
|
|
@@ -209,11 +219,12 @@ try:
|
|
| 209 |
tokenizer="facebook/bart-large-cnn",
|
| 210 |
device=0 if torch.cuda.is_available() else -1
|
| 211 |
)
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
| 217 |
|
| 218 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
| 219 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if torch.cuda.is_available() else -1)
|
|
@@ -225,8 +236,9 @@ try:
|
|
| 225 |
from transformers import AutoModelForQuestionAnswering
|
| 226 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
| 227 |
cuad_model.to(device)
|
| 228 |
-
|
| 229 |
-
|
|
|
|
| 230 |
else:
|
| 231 |
print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
|
| 232 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
|
@@ -494,7 +506,7 @@ async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: Ba
|
|
| 494 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 495 |
temp_file.write(content)
|
| 496 |
temp_file_path = temp_file.name
|
| 497 |
-
text = await process_audio_to_text(
|
| 498 |
if os.path.exists(temp_file_path):
|
| 499 |
os.remove(temp_file_path)
|
| 500 |
if not text:
|
|
|
|
| 1 |
import os
|
| 2 |
os.environ["TRANSFORMERS_NO_FAST"] = "1" # Force use of slow tokenizers
|
|
|
|
| 3 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
| 4 |
|
| 5 |
import io
|
|
|
|
| 125 |
tokenized_examples["end_positions"] = []
|
| 126 |
for i, offsets in enumerate(offset_mapping):
|
| 127 |
input_ids = tokenized_examples["input_ids"][i]
|
| 128 |
+
try:
|
| 129 |
+
cls_index = input_ids.index(tokenizer.cls_token_id)
|
| 130 |
+
except ValueError:
|
| 131 |
+
cls_index = 0
|
| 132 |
sequence_ids = tokenized_examples.sequence_ids(i)
|
| 133 |
sample_index = sample_mapping[i]
|
| 134 |
answers = examples["answers"][sample_index]
|
|
|
|
| 139 |
start_char = answers["answer_start"][0]
|
| 140 |
end_char = start_char + len(answers["text"][0])
|
| 141 |
tokenized_start_index = 0
|
| 142 |
+
while tokenized_start_index < len(sequence_ids) and sequence_ids[tokenized_start_index] != 1:
|
| 143 |
tokenized_start_index += 1
|
| 144 |
tokenized_end_index = len(input_ids) - 1
|
| 145 |
+
while tokenized_end_index >= 0 and sequence_ids[tokenized_end_index] != 1:
|
| 146 |
tokenized_end_index -= 1
|
| 147 |
+
# Safety check: if indices are not found, default to cls_index
|
| 148 |
+
if tokenized_start_index >= len(offsets) or tokenized_end_index < 0:
|
| 149 |
+
tokenized_examples["start_positions"].append(cls_index)
|
| 150 |
+
tokenized_examples["end_positions"].append(cls_index)
|
| 151 |
+
elif not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char):
|
| 152 |
tokenized_examples["start_positions"].append(cls_index)
|
| 153 |
tokenized_examples["end_positions"].append(cls_index)
|
| 154 |
else:
|
| 155 |
+
# Move tokenized_start_index to the first token after start_char
|
| 156 |
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
|
| 157 |
tokenized_start_index += 1
|
| 158 |
+
safe_start = tokenized_start_index - 1 if tokenized_start_index > 0 else cls_index
|
| 159 |
+
tokenized_examples["start_positions"].append(safe_start)
|
| 160 |
+
# Move tokenized_end_index backwards to the last token before end_char
|
| 161 |
+
while tokenized_end_index >= 0 and offsets[tokenized_end_index][1] >= end_char:
|
| 162 |
tokenized_end_index -= 1
|
| 163 |
+
safe_end = tokenized_end_index + 1 if tokenized_end_index < len(offsets) - 1 else cls_index
|
| 164 |
+
tokenized_examples["end_positions"].append(safe_end)
|
| 165 |
return tokenized_examples
|
| 166 |
|
| 167 |
print("✅ Tokenizing dataset...")
|
|
|
|
| 219 |
tokenizer="facebook/bart-large-cnn",
|
| 220 |
device=0 if torch.cuda.is_available() else -1
|
| 221 |
)
|
| 222 |
+
# Commenting out FP16 conversion to avoid potential issues
|
| 223 |
+
# if device == "cuda":
|
| 224 |
+
# try:
|
| 225 |
+
# summarizer.model.half()
|
| 226 |
+
# except Exception as e:
|
| 227 |
+
# print("FP16 conversion failed:", e)
|
| 228 |
|
| 229 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
| 230 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if torch.cuda.is_available() else -1)
|
|
|
|
| 236 |
from transformers import AutoModelForQuestionAnswering
|
| 237 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
| 238 |
cuad_model.to(device)
|
| 239 |
+
# Commenting out FP16 conversion for cuad_model as well
|
| 240 |
+
# if device == "cuda":
|
| 241 |
+
# cuad_model.half()
|
| 242 |
else:
|
| 243 |
print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
|
| 244 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
|
|
|
| 506 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 507 |
temp_file.write(content)
|
| 508 |
temp_file_path = temp_file.name
|
| 509 |
+
text = await process_audio_to_text(temp_file_path)
|
| 510 |
if os.path.exists(temp_file_path):
|
| 511 |
os.remove(temp_file_path)
|
| 512 |
if not text:
|