ddas's picture
model hosted externally
82af392 unverified
raw
history blame
19 kB
"""
Standalone instruction classifier module for prompt injection defense
Integrates the instruction classifier model to sanitize tool outputs
"""
import os
import re
import json
import tempfile
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, AutoModel
import importlib.util
from pathlib import Path
import logging
from typing import List, Tuple, Dict, Any
import numpy as np
try:
from huggingface_hub import hf_hub_download
except ImportError:
hf_hub_download = None
# Import required components from utils.py
from utils import (
TransformerInstructionClassifier,
InstructionDataset,
collate_fn,
get_device
)
class InstructionClassifierSanitizer:
"""
Uses a trained instruction classifier model to detect and remove prompt injections
from tool outputs by identifying instruction tokens and removing them.
"""
def __init__(
self,
model_path: str = None,
model_repo_id: str = "ddas/instruction-classifier-model", # CHANGE THIS!
model_filename: str = "best_instruction_classifier.pth",
model_name: str = "xlm-roberta-base",
threshold: float = 0.01,
max_length: int = 512,
overlap: int = 256,
use_local_model: bool = False # Set to False to use HF Hub
):
"""
Initialize the instruction classifier sanitizer
Args:
model_path: Path to local model file (if use_local_model=True)
model_repo_id: Hugging Face model repository ID (if use_local_model=False)
model_filename: Filename of the model in the HF repository
model_name: Base transformer model name
threshold: Threshold for instruction detection (proportion of instruction tokens)
max_length: Maximum sequence length for sliding windows
overlap: Overlap between sliding windows
use_local_model: Whether to use local model file or download from HF Hub
"""
self.model_name = model_name
self.threshold = threshold
self.max_length = max_length
self.overlap = overlap
self.use_local_model = use_local_model
self.model_repo_id = model_repo_id
self.model_filename = model_filename
# Initialize device
self.device = get_device()
# Map friendly names to actual model names
model_mapping = {
'modern-bert-base': 'answerdotai/ModernBERT-base',
'xlm-roberta-base': 'xlm-roberta-base'
}
actual_model_name = model_mapping.get(model_name, model_name)
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(actual_model_name)
# Load model
self.model = TransformerInstructionClassifier(
model_name=actual_model_name,
num_labels=2,
dropout=0.1
)
# Load trained weights
if self.use_local_model:
# Use local model file
if model_path is None:
model_path = "models/best_instruction_classifier.pth"
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location=self.device)
self._load_model_weights(checkpoint)
print(f"βœ… Loaded instruction classifier model from {model_path}")
else:
raise FileNotFoundError(f"Model file not found: {model_path}")
else:
# Download from Hugging Face Hub
try:
if hf_hub_download is None:
raise ImportError("huggingface_hub is not installed")
# Use HF_TOKEN from environment for private repositories
token = os.getenv('HF_TOKEN')
if token:
print(f"πŸ“₯ Downloading private model from {self.model_repo_id}...")
else:
print(f"πŸ“₯ Downloading public model from {self.model_repo_id}...")
# Download the model file (returns file path, not model object)
model_path = hf_hub_download(
repo_id=self.model_repo_id,
filename=self.model_filename,
cache_dir="./model_cache",
token=token # Will be None for public repos
)
print(f"βœ… Model file downloaded to: {model_path}")
# Load the checkpoint from the downloaded file
checkpoint = torch.load(model_path, map_location=self.device)
self._load_model_weights(checkpoint)
print(f"βœ… Model weights loaded from {self.model_repo_id}")
except Exception as e:
print(f"❌ Failed to download model from {self.model_repo_id}: {e}")
print("Full error details:")
import traceback
traceback.print_exc()
raise RuntimeError(f"Failed to download model from {self.model_repo_id}: {e}")
def _load_model_weights(self, checkpoint):
"""Helper method to load model weights with filtering"""
# Filter out keys that don't belong to the model (like loss function weights)
model_state_dict = {}
for key, value in checkpoint.items():
if not key.startswith('loss_fct'): # Skip loss function weights
model_state_dict[key] = value
# Load the filtered state dict
self.model.load_state_dict(model_state_dict, strict=False)
self.model.to(self.device)
self.model.eval()
def sanitize_tool_output(self, tool_output: str) -> str:
"""
Main sanitization function that processes tool output and removes instruction content
Args:
tool_output: The raw tool output string
Returns:
Sanitized tool output with instruction content removed
"""
if not tool_output or not tool_output.strip():
return tool_output
try:
# Step 1: Detect if the tool output contains instructions
is_injection, confidence_score, tagged_text = self._detect_injection(tool_output)
print(f"πŸ” Instruction detection: injection={is_injection}, confidence={confidence_score:.3f}")
if not is_injection:
print("βœ… No injection detected - returning original output")
return tool_output
print(f"🚨 Injection detected! Sanitizing output...")
print(f" Original: {tool_output}")
print(f" Tagged: {tagged_text}")
# Step 2: Merge close instruction tags
merged_tagged_text = self._merge_close_instruction_tags(tagged_text, min_words_between=4)
print(f" After merging: {merged_tagged_text}")
# Step 3: Remove instruction tags and their content
sanitized_output = self._remove_instruction_tags(merged_tagged_text)
print(f" Sanitized: {sanitized_output}")
return sanitized_output
except Exception as e:
print(f"❌ Error in instruction classifier sanitization: {e}")
# Return original output if sanitization fails
return tool_output
def _detect_injection(self, tool_output: str) -> Tuple[bool, float, str]:
"""
Detect if the tool output contains instructions that could indicate prompt injection.
Returns:
tuple: (is_injection, confidence_score, tagged_text) where:
- is_injection: boolean indicating if injection was detected
- confidence_score: proportion of tokens classified as instructions
- tagged_text: original text with <instruction> tags for debugging
"""
if not tool_output.strip():
return False, 0.0, ""
try:
# Use InstructionDataset sliding window logic for raw text inference
predictions, original_tokens = self._predict_with_sliding_windows(tool_output)
if not predictions:
return False, 0.0, ""
# Calculate the proportion of tokens classified as instructions (label 1)
instruction_tokens = sum(1 for pred in predictions if pred == 1)
total_tokens = len(predictions)
confidence_score = instruction_tokens / total_tokens if total_tokens > 0 else 0.0
# Determine if this is considered an injection based on threshold
is_injection = confidence_score > self.threshold
# Only reconstruct with tags if injection detected
if is_injection:
tagged_text = self._reconstruct_text_with_tags(original_tokens, predictions)
else:
tagged_text = tool_output
return is_injection, confidence_score, tagged_text
except Exception as e:
print(f"Error in instruction classifier detection: {e}")
return False, 0.0, ""
def _predict_with_sliding_windows(self, text: str) -> Tuple[List[int], List[str]]:
"""
Simplified prediction using the predict_instructions function from utils.py
This is more direct and avoids complex aggregation logic.
"""
from utils import predict_instructions
try:
# Use the predict_instructions function directly
tokens, predictions = predict_instructions(self.model, self.tokenizer, text, self.device)
return predictions, tokens
except Exception as e:
print(f"Error in predict_instructions: {e}")
# Fallback to simple tokenization if the complex method fails
return self._simple_predict(text)
def _simple_predict(self, text: str) -> Tuple[List[int], List[str]]:
"""
Simple fallback prediction method without sliding windows
"""
words = text.split()
if not words:
return [], []
# Tokenize with word alignment
encoded = self.tokenizer(
words,
is_split_into_words=True,
add_special_tokens=True,
truncation=True,
padding=True,
max_length=self.max_length,
return_tensors='pt'
)
# Move to device
input_ids = encoded['input_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
# Predict
self.model.eval()
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
predictions = torch.argmax(outputs['logits'], dim=-1)
# Convert back to word-level predictions
word_ids = encoded.word_ids()
word_predictions = []
prev_word_id = None
for i, word_id in enumerate(word_ids):
if word_id is not None and word_id != prev_word_id:
if word_id < len(words):
pred_idx = min(i, predictions.shape[1] - 1)
word_predictions.append(predictions[0, pred_idx].item())
prev_word_id = word_id
# Ensure same length
while len(word_predictions) < len(words):
word_predictions.append(0)
return word_predictions[:len(words)], words
def _convert_subword_to_word_predictions(self, subword_tokens, subword_predictions, original_text):
"""Convert aggregated subword predictions back to word-level predictions"""
# Simple approach: re-tokenize original text and align
original_words = original_text.split()
# Use tokenizer to get word alignment
encoded = self.tokenizer(
original_words,
is_split_into_words=True,
add_special_tokens=True,
truncation=False,
padding=False,
return_tensors='pt'
)
word_ids = encoded.word_ids()
word_predictions = []
# Extract word-level predictions using BERT approach
prev_word_id = None
subword_idx = 0
for i, word_id in enumerate(word_ids):
if word_id is not None and word_id != prev_word_id:
# First subtoken of new word - use its prediction
if subword_idx < len(subword_predictions) and word_id < len(original_words):
word_predictions.append(subword_predictions[subword_idx])
prev_word_id = word_id
if subword_idx < len(subword_predictions):
subword_idx += 1
# Ensure same length
while len(word_predictions) < len(original_words):
word_predictions.append(0)
return word_predictions[:len(original_words)], original_words
def _reconstruct_text_with_tags(self, tokens, predictions):
"""Reconstruct text from tokens and predictions, adding instruction tags"""
if len(tokens) != len(predictions):
print(f"Length mismatch: tokens ({len(tokens)}) vs predictions ({len(predictions)})")
# Truncate to the shorter length to avoid crashes
min_length = min(len(tokens), len(predictions))
tokens = tokens[:min_length]
predictions = predictions[:min_length]
result_parts = []
current_instruction = []
for token, pred in zip(tokens, predictions):
if pred == 1: # INSTRUCTION
current_instruction.append(token)
else: # OTHER
# If we were building an instruction, close it
if current_instruction:
instruction_text = ' '.join(current_instruction)
result_parts.append(f'<instruction>{instruction_text}</instruction>')
current_instruction = []
# Add the non-instruction token
result_parts.append(token)
# Handle case where text ends with an instruction
if current_instruction:
instruction_text = ' '.join(current_instruction)
result_parts.append(f'<instruction>{instruction_text}</instruction>')
# Join with spaces
result = ' '.join(result_parts)
return result
def _merge_close_instruction_tags(self, text, min_words_between=3):
"""
Merge <instruction>...</instruction> segments that are separated by less than min_words_between words
"""
pattern = re.compile(r"(</instruction>)(\s+)([^<]+?)(\s+)(<instruction>)", re.DOTALL)
def should_merge(between_text):
# Count words in between_text
words = re.findall(r"\b\w+\b", between_text)
return len(words) < min_words_between
# Keep merging until no more merges are possible
changed = True
while changed:
changed = False
# Find all potential merge points in the current text
matches = list(pattern.finditer(text))
# Process matches from right to left to avoid position shifts
for match in reversed(matches):
between_text = match.group(3)
if should_merge(between_text):
# Merge: remove the tags between, include the in-between text inside the instruction tags
text = (
text[: match.start(1)] # Text before </instruction>
+ match.group(2) # Whitespace after </instruction>
+ between_text # Text between tags
+ match.group(4) # Whitespace before <instruction>
+ text[match.end(5):] # Text after <instruction>
)
changed = True
break # Start over since we changed the text
return text
def _remove_instruction_tags(self, text: str) -> str:
"""Remove all <instruction>...</instruction> tags and their content from text"""
# Pattern to match <instruction>...</instruction> tags (including nested content)
# Using non-greedy matching to handle multiple instruction blocks
pattern = r'<instruction>.*?</instruction>'
# Remove all instruction tags and their content
cleaned_text = re.sub(pattern, '', text, flags=re.DOTALL | re.IGNORECASE)
# Clean up any extra whitespace that might be left
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
return cleaned_text
# Global instance of the sanitizer
_sanitizer_instance = None
def get_sanitizer():
"""Get or create the global sanitizer instance"""
global _sanitizer_instance
if _sanitizer_instance is None:
try:
# For Hugging Face Spaces deployment, use external model hosting
# The model_repo_id is already set to "ddas/instruction-classifier-model"
print("πŸš€ Initializing instruction classifier from Hugging Face Hub...")
_sanitizer_instance = InstructionClassifierSanitizer(
use_local_model=False,
model_repo_id="ddas/instruction-classifier-model"
)
print("βœ… Instruction classifier initialized successfully!")
except Exception as e:
print(f"❌ Failed to initialize instruction classifier from HF Hub: {e}")
print("πŸ”„ Falling back to local model if available...")
try:
_sanitizer_instance = InstructionClassifierSanitizer(use_local_model=True)
print("βœ… Local model initialized as fallback!")
except Exception as e2:
print(f"❌ Local model also failed: {e2}")
print("⚠️ Instruction classifier disabled - sanitization will be bypassed")
return None
return _sanitizer_instance
def sanitize_tool_output(tool_output):
"""
Main sanitization function that uses the instruction classifier to detect and remove
prompt injection attempts from tool outputs.
Args:
tool_output: The raw tool output string
Returns:
Sanitized tool output with instruction content removed
"""
sanitizer = get_sanitizer()
if sanitizer is None:
print("⚠️ Instruction classifier not available, returning original output")
return tool_output
return sanitizer.sanitize_tool_output(tool_output)