""" Standalone instruction classifier module for prompt injection defense Integrates the instruction classifier model to sanitize tool outputs """ import os import re import json import tempfile import torch import torch.nn as nn from torch.utils.data import DataLoader from transformers import AutoTokenizer, AutoModel import importlib.util from pathlib import Path import logging from typing import List, Tuple, Dict, Any import numpy as np try: from huggingface_hub import hf_hub_download except ImportError: hf_hub_download = None # Import required components from utils.py from utils import ( TransformerInstructionClassifier, InstructionDataset, collate_fn, get_device ) class InstructionClassifierSanitizer: """ Uses a trained instruction classifier model to detect and remove prompt injections from tool outputs by identifying instruction tokens and removing them. """ def __init__( self, model_path: str = None, model_repo_id: str = "ddas/instruction-classifier-model", # CHANGE THIS! model_filename: str = "best_instruction_classifier.pth", model_name: str = "xlm-roberta-base", threshold: float = 0.01, max_length: int = 512, overlap: int = 256, use_local_model: bool = False # Set to False to use HF Hub ): """ Initialize the instruction classifier sanitizer Args: model_path: Path to local model file (if use_local_model=True) model_repo_id: Hugging Face model repository ID (if use_local_model=False) model_filename: Filename of the model in the HF repository model_name: Base transformer model name threshold: Threshold for instruction detection (proportion of instruction tokens) max_length: Maximum sequence length for sliding windows overlap: Overlap between sliding windows use_local_model: Whether to use local model file or download from HF Hub """ self.model_name = model_name self.threshold = threshold self.max_length = max_length self.overlap = overlap self.use_local_model = use_local_model self.model_repo_id = model_repo_id self.model_filename = model_filename # Initialize device self.device = get_device() # Map friendly names to actual model names model_mapping = { 'modern-bert-base': 'answerdotai/ModernBERT-base', 'xlm-roberta-base': 'xlm-roberta-base' } actual_model_name = model_mapping.get(model_name, model_name) # Load tokenizer self.tokenizer = AutoTokenizer.from_pretrained(actual_model_name) # Load model self.model = TransformerInstructionClassifier( model_name=actual_model_name, num_labels=2, dropout=0.1 ) # Load trained weights if self.use_local_model: # Use local model file if model_path is None: model_path = "models/best_instruction_classifier.pth" if os.path.exists(model_path): checkpoint = torch.load(model_path, map_location=self.device) self._load_model_weights(checkpoint) print(f"✅ Loaded instruction classifier model from {model_path}") else: raise FileNotFoundError(f"Model file not found: {model_path}") else: # Download from Hugging Face Hub try: if hf_hub_download is None: raise ImportError("huggingface_hub is not installed") # Use HF_TOKEN from environment for private repositories token = os.getenv('HF_TOKEN') if token: print(f"📥 Downloading private model from {self.model_repo_id}...") else: print(f"📥 Downloading public model from {self.model_repo_id}...") # Download the model file (returns file path, not model object) model_path = hf_hub_download( repo_id=self.model_repo_id, filename=self.model_filename, cache_dir="./model_cache", token=token # Will be None for public repos ) print(f"✅ Model file downloaded to: {model_path}") # Load the checkpoint from the downloaded file checkpoint = torch.load(model_path, map_location=self.device) self._load_model_weights(checkpoint) print(f"✅ Model weights loaded from {self.model_repo_id}") except Exception as e: print(f"❌ Failed to download model from {self.model_repo_id}: {e}") print("Full error details:") import traceback traceback.print_exc() raise RuntimeError(f"Failed to download model from {self.model_repo_id}: {e}") def _load_model_weights(self, checkpoint): """Helper method to load model weights with filtering""" # Filter out keys that don't belong to the model (like loss function weights) model_state_dict = {} for key, value in checkpoint.items(): if not key.startswith('loss_fct'): # Skip loss function weights model_state_dict[key] = value # Load the filtered state dict self.model.load_state_dict(model_state_dict, strict=False) self.model.to(self.device) self.model.eval() def sanitize_tool_output(self, tool_output: str) -> str: """ Main sanitization function that processes tool output and removes instruction content Args: tool_output: The raw tool output string Returns: Sanitized tool output with instruction content removed """ if not tool_output or not tool_output.strip(): return tool_output try: # Step 1: Detect if the tool output contains instructions is_injection, confidence_score, tagged_text = self._detect_injection(tool_output) print(f"🔍 Instruction detection: injection={is_injection}, confidence={confidence_score:.3f}") if not is_injection: print("✅ No injection detected - returning original output") return tool_output print(f"🚨 Injection detected! Sanitizing output...") print(f" Original: {tool_output}") print(f" Tagged: {tagged_text}") # Step 2: Merge close instruction tags merged_tagged_text = self._merge_close_instruction_tags(tagged_text, min_words_between=4) print(f" After merging: {merged_tagged_text}") # Step 3: Remove instruction tags and their content sanitized_output = self._remove_instruction_tags(merged_tagged_text) print(f" Sanitized: {sanitized_output}") return sanitized_output except Exception as e: print(f"❌ Error in instruction classifier sanitization: {e}") # Return original output if sanitization fails return tool_output def _detect_injection(self, tool_output: str) -> Tuple[bool, float, str]: """ Detect if the tool output contains instructions that could indicate prompt injection. Returns: tuple: (is_injection, confidence_score, tagged_text) where: - is_injection: boolean indicating if injection was detected - confidence_score: proportion of tokens classified as instructions - tagged_text: original text with tags for debugging """ if not tool_output.strip(): return False, 0.0, "" try: # Use InstructionDataset sliding window logic for raw text inference predictions, original_tokens = self._predict_with_sliding_windows(tool_output) if not predictions: return False, 0.0, "" # Calculate the proportion of tokens classified as instructions (label 1) instruction_tokens = sum(1 for pred in predictions if pred == 1) total_tokens = len(predictions) confidence_score = instruction_tokens / total_tokens if total_tokens > 0 else 0.0 # Determine if this is considered an injection based on threshold is_injection = confidence_score > self.threshold # Only reconstruct with tags if injection detected if is_injection: tagged_text = self._reconstruct_text_with_tags(original_tokens, predictions) else: tagged_text = tool_output return is_injection, confidence_score, tagged_text except Exception as e: print(f"Error in instruction classifier detection: {e}") return False, 0.0, "" def _predict_with_sliding_windows(self, text: str) -> Tuple[List[int], List[str]]: """ Simplified prediction using the predict_instructions function from utils.py This is more direct and avoids complex aggregation logic. """ from utils import predict_instructions try: # Use the predict_instructions function directly tokens, predictions = predict_instructions(self.model, self.tokenizer, text, self.device) return predictions, tokens except Exception as e: print(f"Error in predict_instructions: {e}") # Fallback to simple tokenization if the complex method fails return self._simple_predict(text) def _simple_predict(self, text: str) -> Tuple[List[int], List[str]]: """ Simple fallback prediction method without sliding windows """ words = text.split() if not words: return [], [] # Tokenize with word alignment encoded = self.tokenizer( words, is_split_into_words=True, add_special_tokens=True, truncation=True, padding=True, max_length=self.max_length, return_tensors='pt' ) # Move to device input_ids = encoded['input_ids'].to(self.device) attention_mask = encoded['attention_mask'].to(self.device) # Predict self.model.eval() with torch.no_grad(): outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) predictions = torch.argmax(outputs['logits'], dim=-1) # Convert back to word-level predictions word_ids = encoded.word_ids() word_predictions = [] prev_word_id = None for i, word_id in enumerate(word_ids): if word_id is not None and word_id != prev_word_id: if word_id < len(words): pred_idx = min(i, predictions.shape[1] - 1) word_predictions.append(predictions[0, pred_idx].item()) prev_word_id = word_id # Ensure same length while len(word_predictions) < len(words): word_predictions.append(0) return word_predictions[:len(words)], words def _convert_subword_to_word_predictions(self, subword_tokens, subword_predictions, original_text): """Convert aggregated subword predictions back to word-level predictions""" # Simple approach: re-tokenize original text and align original_words = original_text.split() # Use tokenizer to get word alignment encoded = self.tokenizer( original_words, is_split_into_words=True, add_special_tokens=True, truncation=False, padding=False, return_tensors='pt' ) word_ids = encoded.word_ids() word_predictions = [] # Extract word-level predictions using BERT approach prev_word_id = None subword_idx = 0 for i, word_id in enumerate(word_ids): if word_id is not None and word_id != prev_word_id: # First subtoken of new word - use its prediction if subword_idx < len(subword_predictions) and word_id < len(original_words): word_predictions.append(subword_predictions[subword_idx]) prev_word_id = word_id if subword_idx < len(subword_predictions): subword_idx += 1 # Ensure same length while len(word_predictions) < len(original_words): word_predictions.append(0) return word_predictions[:len(original_words)], original_words def _reconstruct_text_with_tags(self, tokens, predictions): """Reconstruct text from tokens and predictions, adding instruction tags""" if len(tokens) != len(predictions): print(f"Length mismatch: tokens ({len(tokens)}) vs predictions ({len(predictions)})") # Truncate to the shorter length to avoid crashes min_length = min(len(tokens), len(predictions)) tokens = tokens[:min_length] predictions = predictions[:min_length] result_parts = [] current_instruction = [] for token, pred in zip(tokens, predictions): if pred == 1: # INSTRUCTION current_instruction.append(token) else: # OTHER # If we were building an instruction, close it if current_instruction: instruction_text = ' '.join(current_instruction) result_parts.append(f'{instruction_text}') current_instruction = [] # Add the non-instruction token result_parts.append(token) # Handle case where text ends with an instruction if current_instruction: instruction_text = ' '.join(current_instruction) result_parts.append(f'{instruction_text}') # Join with spaces result = ' '.join(result_parts) return result def _merge_close_instruction_tags(self, text, min_words_between=3): """ Merge ... segments that are separated by less than min_words_between words """ pattern = re.compile(r"()(\s+)([^<]+?)(\s+)()", re.DOTALL) def should_merge(between_text): # Count words in between_text words = re.findall(r"\b\w+\b", between_text) return len(words) < min_words_between # Keep merging until no more merges are possible changed = True while changed: changed = False # Find all potential merge points in the current text matches = list(pattern.finditer(text)) # Process matches from right to left to avoid position shifts for match in reversed(matches): between_text = match.group(3) if should_merge(between_text): # Merge: remove the tags between, include the in-between text inside the instruction tags text = ( text[: match.start(1)] # Text before + match.group(2) # Whitespace after + between_text # Text between tags + match.group(4) # Whitespace before + text[match.end(5):] # Text after ) changed = True break # Start over since we changed the text return text def _remove_instruction_tags(self, text: str) -> str: """Remove all ... tags and their content from text""" # Pattern to match ... tags (including nested content) # Using non-greedy matching to handle multiple instruction blocks pattern = r'.*?' # Remove all instruction tags and their content cleaned_text = re.sub(pattern, '', text, flags=re.DOTALL | re.IGNORECASE) # Clean up any extra whitespace that might be left cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip() return cleaned_text # Global instance of the sanitizer _sanitizer_instance = None def get_sanitizer(): """Get or create the global sanitizer instance""" global _sanitizer_instance if _sanitizer_instance is None: try: # For Hugging Face Spaces deployment, use external model hosting # The model_repo_id is already set to "ddas/instruction-classifier-model" print("🚀 Initializing instruction classifier from Hugging Face Hub...") _sanitizer_instance = InstructionClassifierSanitizer( use_local_model=False, model_repo_id="ddas/instruction-classifier-model" ) print("✅ Instruction classifier initialized successfully!") except Exception as e: print(f"❌ Failed to initialize instruction classifier from HF Hub: {e}") print("🔄 Falling back to local model if available...") try: _sanitizer_instance = InstructionClassifierSanitizer(use_local_model=True) print("✅ Local model initialized as fallback!") except Exception as e2: print(f"❌ Local model also failed: {e2}") print("⚠️ Instruction classifier disabled - sanitization will be bypassed") return None return _sanitizer_instance def sanitize_tool_output(tool_output): """ Main sanitization function that uses the instruction classifier to detect and remove prompt injection attempts from tool outputs. Args: tool_output: The raw tool output string Returns: Sanitized tool output with instruction content removed """ sanitizer = get_sanitizer() if sanitizer is None: print("⚠️ Instruction classifier not available, returning original output") return tool_output return sanitizer.sanitize_tool_output(tool_output)