Spaces:
Running
on
Zero
Running
on
Zero
model hosted externally
Browse files- .gitignore +2 -0
- agent.py +2 -4
- instruction_classifier.py +460 -0
- requirements.txt +8 -0
- upload_model.py +117 -0
- utils.py +638 -0
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
**.pyc
|
2 |
.env
|
3 |
notes.txt
|
|
|
|
|
|
1 |
**.pyc
|
2 |
.env
|
3 |
notes.txt
|
4 |
+
models/
|
5 |
+
model_cache/
|
agent.py
CHANGED
@@ -366,10 +366,8 @@ Body: {email.body_value}"""
|
|
366 |
return f"Error: Unknown tool call '{tool_call_str}'"
|
367 |
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
# For now, just pass through the output
|
372 |
-
return tool_output
|
373 |
|
374 |
|
375 |
def extract_tool_calls(text):
|
|
|
366 |
return f"Error: Unknown tool call '{tool_call_str}'"
|
367 |
|
368 |
|
369 |
+
# Import the instruction classifier sanitizer
|
370 |
+
from instruction_classifier import sanitize_tool_output
|
|
|
|
|
371 |
|
372 |
|
373 |
def extract_tool_calls(text):
|
instruction_classifier.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Standalone instruction classifier module for prompt injection defense
|
3 |
+
Integrates the instruction classifier model to sanitize tool outputs
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import json
|
9 |
+
import tempfile
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
from transformers import AutoTokenizer, AutoModel
|
14 |
+
import importlib.util
|
15 |
+
from pathlib import Path
|
16 |
+
import logging
|
17 |
+
from typing import List, Tuple, Dict, Any
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
try:
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
except ImportError:
|
23 |
+
hf_hub_download = None
|
24 |
+
|
25 |
+
# Import required components from utils.py
|
26 |
+
from utils import (
|
27 |
+
TransformerInstructionClassifier,
|
28 |
+
InstructionDataset,
|
29 |
+
collate_fn,
|
30 |
+
get_device
|
31 |
+
)
|
32 |
+
|
33 |
+
class InstructionClassifierSanitizer:
|
34 |
+
"""
|
35 |
+
Uses a trained instruction classifier model to detect and remove prompt injections
|
36 |
+
from tool outputs by identifying instruction tokens and removing them.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
model_path: str = None,
|
42 |
+
model_repo_id: str = "ddas/instruction-classifier-model", # CHANGE THIS!
|
43 |
+
model_filename: str = "best_instruction_classifier.pth",
|
44 |
+
model_name: str = "xlm-roberta-base",
|
45 |
+
threshold: float = 0.01,
|
46 |
+
max_length: int = 512,
|
47 |
+
overlap: int = 256,
|
48 |
+
use_local_model: bool = False # Set to False to use HF Hub
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Initialize the instruction classifier sanitizer
|
52 |
+
|
53 |
+
Args:
|
54 |
+
model_path: Path to local model file (if use_local_model=True)
|
55 |
+
model_repo_id: Hugging Face model repository ID (if use_local_model=False)
|
56 |
+
model_filename: Filename of the model in the HF repository
|
57 |
+
model_name: Base transformer model name
|
58 |
+
threshold: Threshold for instruction detection (proportion of instruction tokens)
|
59 |
+
max_length: Maximum sequence length for sliding windows
|
60 |
+
overlap: Overlap between sliding windows
|
61 |
+
use_local_model: Whether to use local model file or download from HF Hub
|
62 |
+
"""
|
63 |
+
self.model_name = model_name
|
64 |
+
self.threshold = threshold
|
65 |
+
self.max_length = max_length
|
66 |
+
self.overlap = overlap
|
67 |
+
self.use_local_model = use_local_model
|
68 |
+
self.model_repo_id = model_repo_id
|
69 |
+
self.model_filename = model_filename
|
70 |
+
|
71 |
+
# Initialize device
|
72 |
+
self.device = get_device()
|
73 |
+
|
74 |
+
# Map friendly names to actual model names
|
75 |
+
model_mapping = {
|
76 |
+
'modern-bert-base': 'answerdotai/ModernBERT-base',
|
77 |
+
'xlm-roberta-base': 'xlm-roberta-base'
|
78 |
+
}
|
79 |
+
actual_model_name = model_mapping.get(model_name, model_name)
|
80 |
+
|
81 |
+
# Load tokenizer
|
82 |
+
self.tokenizer = AutoTokenizer.from_pretrained(actual_model_name)
|
83 |
+
|
84 |
+
# Load model
|
85 |
+
self.model = TransformerInstructionClassifier(
|
86 |
+
model_name=actual_model_name,
|
87 |
+
num_labels=2,
|
88 |
+
dropout=0.1
|
89 |
+
)
|
90 |
+
|
91 |
+
# Load trained weights
|
92 |
+
if self.use_local_model:
|
93 |
+
# Use local model file
|
94 |
+
if model_path is None:
|
95 |
+
model_path = "models/best_instruction_classifier.pth"
|
96 |
+
|
97 |
+
if os.path.exists(model_path):
|
98 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
99 |
+
self._load_model_weights(checkpoint)
|
100 |
+
print(f"✅ Loaded instruction classifier model from {model_path}")
|
101 |
+
else:
|
102 |
+
raise FileNotFoundError(f"Model file not found: {model_path}")
|
103 |
+
else:
|
104 |
+
# Download from Hugging Face Hub
|
105 |
+
try:
|
106 |
+
if hf_hub_download is None:
|
107 |
+
raise ImportError("huggingface_hub is not installed")
|
108 |
+
|
109 |
+
# Use HF_TOKEN from environment for private repositories
|
110 |
+
token = os.getenv('HF_TOKEN')
|
111 |
+
if token:
|
112 |
+
print(f"📥 Downloading private model from {self.model_repo_id}...")
|
113 |
+
else:
|
114 |
+
print(f"📥 Downloading public model from {self.model_repo_id}...")
|
115 |
+
|
116 |
+
# Download the model file (returns file path, not model object)
|
117 |
+
model_path = hf_hub_download(
|
118 |
+
repo_id=self.model_repo_id,
|
119 |
+
filename=self.model_filename,
|
120 |
+
cache_dir="./model_cache",
|
121 |
+
token=token # Will be None for public repos
|
122 |
+
)
|
123 |
+
print(f"✅ Model file downloaded to: {model_path}")
|
124 |
+
|
125 |
+
# Load the checkpoint from the downloaded file
|
126 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
127 |
+
self._load_model_weights(checkpoint)
|
128 |
+
print(f"✅ Model weights loaded from {self.model_repo_id}")
|
129 |
+
except Exception as e:
|
130 |
+
print(f"❌ Failed to download model from {self.model_repo_id}: {e}")
|
131 |
+
print("Full error details:")
|
132 |
+
import traceback
|
133 |
+
traceback.print_exc()
|
134 |
+
raise RuntimeError(f"Failed to download model from {self.model_repo_id}: {e}")
|
135 |
+
|
136 |
+
def _load_model_weights(self, checkpoint):
|
137 |
+
"""Helper method to load model weights with filtering"""
|
138 |
+
# Filter out keys that don't belong to the model (like loss function weights)
|
139 |
+
model_state_dict = {}
|
140 |
+
for key, value in checkpoint.items():
|
141 |
+
if not key.startswith('loss_fct'): # Skip loss function weights
|
142 |
+
model_state_dict[key] = value
|
143 |
+
|
144 |
+
# Load the filtered state dict
|
145 |
+
self.model.load_state_dict(model_state_dict, strict=False)
|
146 |
+
self.model.to(self.device)
|
147 |
+
self.model.eval()
|
148 |
+
|
149 |
+
def sanitize_tool_output(self, tool_output: str) -> str:
|
150 |
+
"""
|
151 |
+
Main sanitization function that processes tool output and removes instruction content
|
152 |
+
|
153 |
+
Args:
|
154 |
+
tool_output: The raw tool output string
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
Sanitized tool output with instruction content removed
|
158 |
+
"""
|
159 |
+
if not tool_output or not tool_output.strip():
|
160 |
+
return tool_output
|
161 |
+
|
162 |
+
try:
|
163 |
+
# Step 1: Detect if the tool output contains instructions
|
164 |
+
is_injection, confidence_score, tagged_text = self._detect_injection(tool_output)
|
165 |
+
|
166 |
+
print(f"🔍 Instruction detection: injection={is_injection}, confidence={confidence_score:.3f}")
|
167 |
+
|
168 |
+
if not is_injection:
|
169 |
+
print("✅ No injection detected - returning original output")
|
170 |
+
return tool_output
|
171 |
+
|
172 |
+
print(f"🚨 Injection detected! Sanitizing output...")
|
173 |
+
print(f" Original: {tool_output}")
|
174 |
+
print(f" Tagged: {tagged_text}")
|
175 |
+
|
176 |
+
# Step 2: Merge close instruction tags
|
177 |
+
merged_tagged_text = self._merge_close_instruction_tags(tagged_text, min_words_between=4)
|
178 |
+
print(f" After merging: {merged_tagged_text}")
|
179 |
+
|
180 |
+
# Step 3: Remove instruction tags and their content
|
181 |
+
sanitized_output = self._remove_instruction_tags(merged_tagged_text)
|
182 |
+
print(f" Sanitized: {sanitized_output}")
|
183 |
+
|
184 |
+
return sanitized_output
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
print(f"❌ Error in instruction classifier sanitization: {e}")
|
188 |
+
# Return original output if sanitization fails
|
189 |
+
return tool_output
|
190 |
+
|
191 |
+
def _detect_injection(self, tool_output: str) -> Tuple[bool, float, str]:
|
192 |
+
"""
|
193 |
+
Detect if the tool output contains instructions that could indicate prompt injection.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
tuple: (is_injection, confidence_score, tagged_text) where:
|
197 |
+
- is_injection: boolean indicating if injection was detected
|
198 |
+
- confidence_score: proportion of tokens classified as instructions
|
199 |
+
- tagged_text: original text with <instruction> tags for debugging
|
200 |
+
"""
|
201 |
+
if not tool_output.strip():
|
202 |
+
return False, 0.0, ""
|
203 |
+
|
204 |
+
try:
|
205 |
+
# Use InstructionDataset sliding window logic for raw text inference
|
206 |
+
predictions, original_tokens = self._predict_with_sliding_windows(tool_output)
|
207 |
+
|
208 |
+
if not predictions:
|
209 |
+
return False, 0.0, ""
|
210 |
+
|
211 |
+
# Calculate the proportion of tokens classified as instructions (label 1)
|
212 |
+
instruction_tokens = sum(1 for pred in predictions if pred == 1)
|
213 |
+
total_tokens = len(predictions)
|
214 |
+
confidence_score = instruction_tokens / total_tokens if total_tokens > 0 else 0.0
|
215 |
+
|
216 |
+
# Determine if this is considered an injection based on threshold
|
217 |
+
is_injection = confidence_score > self.threshold
|
218 |
+
|
219 |
+
# Only reconstruct with tags if injection detected
|
220 |
+
if is_injection:
|
221 |
+
tagged_text = self._reconstruct_text_with_tags(original_tokens, predictions)
|
222 |
+
else:
|
223 |
+
tagged_text = tool_output
|
224 |
+
|
225 |
+
return is_injection, confidence_score, tagged_text
|
226 |
+
|
227 |
+
except Exception as e:
|
228 |
+
print(f"Error in instruction classifier detection: {e}")
|
229 |
+
return False, 0.0, ""
|
230 |
+
|
231 |
+
def _predict_with_sliding_windows(self, text: str) -> Tuple[List[int], List[str]]:
|
232 |
+
"""
|
233 |
+
Simplified prediction using the predict_instructions function from utils.py
|
234 |
+
This is more direct and avoids complex aggregation logic.
|
235 |
+
"""
|
236 |
+
from utils import predict_instructions
|
237 |
+
|
238 |
+
try:
|
239 |
+
# Use the predict_instructions function directly
|
240 |
+
tokens, predictions = predict_instructions(self.model, self.tokenizer, text, self.device)
|
241 |
+
return predictions, tokens
|
242 |
+
except Exception as e:
|
243 |
+
print(f"Error in predict_instructions: {e}")
|
244 |
+
# Fallback to simple tokenization if the complex method fails
|
245 |
+
return self._simple_predict(text)
|
246 |
+
|
247 |
+
def _simple_predict(self, text: str) -> Tuple[List[int], List[str]]:
|
248 |
+
"""
|
249 |
+
Simple fallback prediction method without sliding windows
|
250 |
+
"""
|
251 |
+
words = text.split()
|
252 |
+
if not words:
|
253 |
+
return [], []
|
254 |
+
|
255 |
+
# Tokenize with word alignment
|
256 |
+
encoded = self.tokenizer(
|
257 |
+
words,
|
258 |
+
is_split_into_words=True,
|
259 |
+
add_special_tokens=True,
|
260 |
+
truncation=True,
|
261 |
+
padding=True,
|
262 |
+
max_length=self.max_length,
|
263 |
+
return_tensors='pt'
|
264 |
+
)
|
265 |
+
|
266 |
+
# Move to device
|
267 |
+
input_ids = encoded['input_ids'].to(self.device)
|
268 |
+
attention_mask = encoded['attention_mask'].to(self.device)
|
269 |
+
|
270 |
+
# Predict
|
271 |
+
self.model.eval()
|
272 |
+
with torch.no_grad():
|
273 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
274 |
+
predictions = torch.argmax(outputs['logits'], dim=-1)
|
275 |
+
|
276 |
+
# Convert back to word-level predictions
|
277 |
+
word_ids = encoded.word_ids()
|
278 |
+
word_predictions = []
|
279 |
+
prev_word_id = None
|
280 |
+
|
281 |
+
for i, word_id in enumerate(word_ids):
|
282 |
+
if word_id is not None and word_id != prev_word_id:
|
283 |
+
if word_id < len(words):
|
284 |
+
pred_idx = min(i, predictions.shape[1] - 1)
|
285 |
+
word_predictions.append(predictions[0, pred_idx].item())
|
286 |
+
prev_word_id = word_id
|
287 |
+
|
288 |
+
# Ensure same length
|
289 |
+
while len(word_predictions) < len(words):
|
290 |
+
word_predictions.append(0)
|
291 |
+
|
292 |
+
return word_predictions[:len(words)], words
|
293 |
+
|
294 |
+
def _convert_subword_to_word_predictions(self, subword_tokens, subword_predictions, original_text):
|
295 |
+
"""Convert aggregated subword predictions back to word-level predictions"""
|
296 |
+
# Simple approach: re-tokenize original text and align
|
297 |
+
original_words = original_text.split()
|
298 |
+
|
299 |
+
# Use tokenizer to get word alignment
|
300 |
+
encoded = self.tokenizer(
|
301 |
+
original_words,
|
302 |
+
is_split_into_words=True,
|
303 |
+
add_special_tokens=True,
|
304 |
+
truncation=False,
|
305 |
+
padding=False,
|
306 |
+
return_tensors='pt'
|
307 |
+
)
|
308 |
+
|
309 |
+
word_ids = encoded.word_ids()
|
310 |
+
word_predictions = []
|
311 |
+
|
312 |
+
# Extract word-level predictions using BERT approach
|
313 |
+
prev_word_id = None
|
314 |
+
subword_idx = 0
|
315 |
+
|
316 |
+
for i, word_id in enumerate(word_ids):
|
317 |
+
if word_id is not None and word_id != prev_word_id:
|
318 |
+
# First subtoken of new word - use its prediction
|
319 |
+
if subword_idx < len(subword_predictions) and word_id < len(original_words):
|
320 |
+
word_predictions.append(subword_predictions[subword_idx])
|
321 |
+
prev_word_id = word_id
|
322 |
+
if subword_idx < len(subword_predictions):
|
323 |
+
subword_idx += 1
|
324 |
+
|
325 |
+
# Ensure same length
|
326 |
+
while len(word_predictions) < len(original_words):
|
327 |
+
word_predictions.append(0)
|
328 |
+
|
329 |
+
return word_predictions[:len(original_words)], original_words
|
330 |
+
|
331 |
+
def _reconstruct_text_with_tags(self, tokens, predictions):
|
332 |
+
"""Reconstruct text from tokens and predictions, adding instruction tags"""
|
333 |
+
if len(tokens) != len(predictions):
|
334 |
+
print(f"Length mismatch: tokens ({len(tokens)}) vs predictions ({len(predictions)})")
|
335 |
+
# Truncate to the shorter length to avoid crashes
|
336 |
+
min_length = min(len(tokens), len(predictions))
|
337 |
+
tokens = tokens[:min_length]
|
338 |
+
predictions = predictions[:min_length]
|
339 |
+
|
340 |
+
result_parts = []
|
341 |
+
current_instruction = []
|
342 |
+
|
343 |
+
for token, pred in zip(tokens, predictions):
|
344 |
+
if pred == 1: # INSTRUCTION
|
345 |
+
current_instruction.append(token)
|
346 |
+
else: # OTHER
|
347 |
+
# If we were building an instruction, close it
|
348 |
+
if current_instruction:
|
349 |
+
instruction_text = ' '.join(current_instruction)
|
350 |
+
result_parts.append(f'<instruction>{instruction_text}</instruction>')
|
351 |
+
current_instruction = []
|
352 |
+
|
353 |
+
# Add the non-instruction token
|
354 |
+
result_parts.append(token)
|
355 |
+
|
356 |
+
# Handle case where text ends with an instruction
|
357 |
+
if current_instruction:
|
358 |
+
instruction_text = ' '.join(current_instruction)
|
359 |
+
result_parts.append(f'<instruction>{instruction_text}</instruction>')
|
360 |
+
|
361 |
+
# Join with spaces
|
362 |
+
result = ' '.join(result_parts)
|
363 |
+
|
364 |
+
return result
|
365 |
+
|
366 |
+
def _merge_close_instruction_tags(self, text, min_words_between=3):
|
367 |
+
"""
|
368 |
+
Merge <instruction>...</instruction> segments that are separated by less than min_words_between words
|
369 |
+
"""
|
370 |
+
pattern = re.compile(r"(</instruction>)(\s+)([^<]+?)(\s+)(<instruction>)", re.DOTALL)
|
371 |
+
|
372 |
+
def should_merge(between_text):
|
373 |
+
# Count words in between_text
|
374 |
+
words = re.findall(r"\b\w+\b", between_text)
|
375 |
+
return len(words) < min_words_between
|
376 |
+
|
377 |
+
# Keep merging until no more merges are possible
|
378 |
+
changed = True
|
379 |
+
while changed:
|
380 |
+
changed = False
|
381 |
+
# Find all potential merge points in the current text
|
382 |
+
matches = list(pattern.finditer(text))
|
383 |
+
|
384 |
+
# Process matches from right to left to avoid position shifts
|
385 |
+
for match in reversed(matches):
|
386 |
+
between_text = match.group(3)
|
387 |
+
if should_merge(between_text):
|
388 |
+
# Merge: remove the tags between, include the in-between text inside the instruction tags
|
389 |
+
text = (
|
390 |
+
text[: match.start(1)] # Text before </instruction>
|
391 |
+
+ match.group(2) # Whitespace after </instruction>
|
392 |
+
+ between_text # Text between tags
|
393 |
+
+ match.group(4) # Whitespace before <instruction>
|
394 |
+
+ text[match.end(5):] # Text after <instruction>
|
395 |
+
)
|
396 |
+
changed = True
|
397 |
+
break # Start over since we changed the text
|
398 |
+
|
399 |
+
return text
|
400 |
+
|
401 |
+
def _remove_instruction_tags(self, text: str) -> str:
|
402 |
+
"""Remove all <instruction>...</instruction> tags and their content from text"""
|
403 |
+
# Pattern to match <instruction>...</instruction> tags (including nested content)
|
404 |
+
# Using non-greedy matching to handle multiple instruction blocks
|
405 |
+
pattern = r'<instruction>.*?</instruction>'
|
406 |
+
|
407 |
+
# Remove all instruction tags and their content
|
408 |
+
cleaned_text = re.sub(pattern, '', text, flags=re.DOTALL | re.IGNORECASE)
|
409 |
+
|
410 |
+
# Clean up any extra whitespace that might be left
|
411 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
|
412 |
+
|
413 |
+
return cleaned_text
|
414 |
+
|
415 |
+
|
416 |
+
# Global instance of the sanitizer
|
417 |
+
_sanitizer_instance = None
|
418 |
+
|
419 |
+
def get_sanitizer():
|
420 |
+
"""Get or create the global sanitizer instance"""
|
421 |
+
global _sanitizer_instance
|
422 |
+
if _sanitizer_instance is None:
|
423 |
+
try:
|
424 |
+
# For Hugging Face Spaces deployment, use external model hosting
|
425 |
+
# The model_repo_id is already set to "ddas/instruction-classifier-model"
|
426 |
+
print("🚀 Initializing instruction classifier from Hugging Face Hub...")
|
427 |
+
_sanitizer_instance = InstructionClassifierSanitizer(
|
428 |
+
use_local_model=False,
|
429 |
+
model_repo_id="ddas/instruction-classifier-model"
|
430 |
+
)
|
431 |
+
print("✅ Instruction classifier initialized successfully!")
|
432 |
+
except Exception as e:
|
433 |
+
print(f"❌ Failed to initialize instruction classifier from HF Hub: {e}")
|
434 |
+
print("🔄 Falling back to local model if available...")
|
435 |
+
try:
|
436 |
+
_sanitizer_instance = InstructionClassifierSanitizer(use_local_model=True)
|
437 |
+
print("✅ Local model initialized as fallback!")
|
438 |
+
except Exception as e2:
|
439 |
+
print(f"❌ Local model also failed: {e2}")
|
440 |
+
print("⚠️ Instruction classifier disabled - sanitization will be bypassed")
|
441 |
+
return None
|
442 |
+
return _sanitizer_instance
|
443 |
+
|
444 |
+
def sanitize_tool_output(tool_output):
|
445 |
+
"""
|
446 |
+
Main sanitization function that uses the instruction classifier to detect and remove
|
447 |
+
prompt injection attempts from tool outputs.
|
448 |
+
|
449 |
+
Args:
|
450 |
+
tool_output: The raw tool output string
|
451 |
+
|
452 |
+
Returns:
|
453 |
+
Sanitized tool output with instruction content removed
|
454 |
+
"""
|
455 |
+
sanitizer = get_sanitizer()
|
456 |
+
if sanitizer is None:
|
457 |
+
print("⚠️ Instruction classifier not available, returning original output")
|
458 |
+
return tool_output
|
459 |
+
|
460 |
+
return sanitizer.sanitize_tool_output(tool_output)
|
requirements.txt
CHANGED
@@ -4,3 +4,11 @@ anthropic
|
|
4 |
python-dotenv
|
5 |
invariant-sdk
|
6 |
httpx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
python-dotenv
|
5 |
invariant-sdk
|
6 |
httpx
|
7 |
+
torch>=2.0.0
|
8 |
+
transformers>=4.30.0
|
9 |
+
scikit-learn>=1.3.0
|
10 |
+
numpy>=1.24.0
|
11 |
+
tqdm>=4.65.0
|
12 |
+
datasets>=2.12.0
|
13 |
+
accelerate>=0.20.0
|
14 |
+
huggingface_hub>=0.20.0
|
upload_model.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Upload the instruction classifier model to Hugging Face Model Hub
|
4 |
+
"""
|
5 |
+
|
6 |
+
from huggingface_hub import HfApi, login
|
7 |
+
import os
|
8 |
+
|
9 |
+
def upload_model():
|
10 |
+
# You'll need to login first: huggingface-cli login
|
11 |
+
# Or set HUGGINGFACE_TOKEN environment variable
|
12 |
+
|
13 |
+
api = HfApi()
|
14 |
+
|
15 |
+
# Replace with your username and repository name
|
16 |
+
repo_id = "ddas/instruction-classifier-model" # CHANGE THIS!
|
17 |
+
|
18 |
+
try:
|
19 |
+
# Create repository if it doesn't exist (set private=True for private repo)
|
20 |
+
api.create_repo(repo_id, repo_type="model", exist_ok=True, private=True)
|
21 |
+
print(f"✅ Private repository {repo_id} created/verified")
|
22 |
+
|
23 |
+
# Upload the model file
|
24 |
+
api.upload_file(
|
25 |
+
path_or_fileobj="models/best_instruction_classifier.pth",
|
26 |
+
path_in_repo="best_instruction_classifier.pth",
|
27 |
+
repo_id=repo_id,
|
28 |
+
repo_type="model",
|
29 |
+
)
|
30 |
+
print(f"✅ Model uploaded to {repo_id}")
|
31 |
+
|
32 |
+
# Upload a README for the model
|
33 |
+
readme_content = f"""# Instruction Classifier Model
|
34 |
+
|
35 |
+
This model is trained to detect instruction-like tokens in text for prompt injection defense.
|
36 |
+
|
37 |
+
## Model Details
|
38 |
+
- Architecture: XLM-RoBERTa base with classification head
|
39 |
+
- Task: Token classification (instruction vs. other)
|
40 |
+
- Training: Sliding window approach with diverse datasets
|
41 |
+
- Size: ~1GB
|
42 |
+
- Parameters: ~278M
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
|
46 |
+
```python
|
47 |
+
from huggingface_hub import hf_hub_download
|
48 |
+
import torch
|
49 |
+
from transformers import AutoTokenizer
|
50 |
+
|
51 |
+
# You'll need the TransformerInstructionClassifier class from utils.py
|
52 |
+
# from utils import TransformerInstructionClassifier
|
53 |
+
|
54 |
+
# Download model file (returns path, not model object)
|
55 |
+
model_path = hf_hub_download(
|
56 |
+
repo_id="{repo_id}",
|
57 |
+
filename="best_instruction_classifier.pth",
|
58 |
+
token="your_hf_token_if_private" # Only needed for private repos
|
59 |
+
)
|
60 |
+
|
61 |
+
# Create model instance
|
62 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
63 |
+
model = TransformerInstructionClassifier(
|
64 |
+
model_name='xlm-roberta-base',
|
65 |
+
num_labels=2,
|
66 |
+
dropout=0.1
|
67 |
+
)
|
68 |
+
|
69 |
+
# Load weights from downloaded file
|
70 |
+
checkpoint = torch.load(model_path, map_location=device)
|
71 |
+
|
72 |
+
# Filter out loss function weights if present
|
73 |
+
model_state_dict = {{}}
|
74 |
+
for key, value in checkpoint.items():
|
75 |
+
if not key.startswith('loss_fct'):
|
76 |
+
model_state_dict[key] = value
|
77 |
+
|
78 |
+
model.load_state_dict(model_state_dict, strict=False)
|
79 |
+
model.to(device)
|
80 |
+
model.eval()
|
81 |
+
|
82 |
+
print("✅ Model loaded successfully!")
|
83 |
+
```
|
84 |
+
|
85 |
+
## Direct Usage with Instruction Classifier
|
86 |
+
|
87 |
+
```python
|
88 |
+
from instruction_classifier import sanitize_tool_output
|
89 |
+
|
90 |
+
# This will automatically download and use the model
|
91 |
+
result = sanitize_tool_output("Your text to check for injections")
|
92 |
+
```
|
93 |
+
|
94 |
+
## License
|
95 |
+
[Specify your license here]
|
96 |
+
"""
|
97 |
+
|
98 |
+
api.upload_file(
|
99 |
+
path_or_fileobj=readme_content.encode(),
|
100 |
+
path_in_repo="README.md",
|
101 |
+
repo_id=repo_id,
|
102 |
+
repo_type="model",
|
103 |
+
)
|
104 |
+
print(f"✅ README uploaded")
|
105 |
+
|
106 |
+
print(f"\n🎉 Model successfully uploaded to: https://huggingface.co/{repo_id}")
|
107 |
+
print(f"\nUpdate your instruction_classifier.py with:")
|
108 |
+
print(f'model_path = hf_hub_download(repo_id="{repo_id}", filename="best_instruction_classifier.pth")')
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
print(f"❌ Error uploading model: {e}")
|
112 |
+
print("\nMake sure to:")
|
113 |
+
print("1. Run: huggingface-cli login")
|
114 |
+
print("2. Update repo_id with your username")
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
upload_model()
|
utils.py
ADDED
@@ -0,0 +1,638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
import re
|
9 |
+
from typing import List, Tuple, Dict, Any
|
10 |
+
import warnings
|
11 |
+
import logging
|
12 |
+
import os
|
13 |
+
from datetime import datetime
|
14 |
+
from sklearn.utils.class_weight import compute_class_weight
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
# Disable tokenizer parallelism to avoid forking warnings
|
18 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
+
|
20 |
+
warnings.filterwarnings('ignore')
|
21 |
+
|
22 |
+
def set_random_seeds(seed=42):
|
23 |
+
"""Set random seeds for reproducibility"""
|
24 |
+
import random
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
|
28 |
+
random.seed(seed)
|
29 |
+
np.random.seed(seed)
|
30 |
+
torch.manual_seed(seed)
|
31 |
+
torch.cuda.manual_seed_all(seed) # For multi-GPU
|
32 |
+
|
33 |
+
# Make CuDNN deterministic (slower but reproducible)
|
34 |
+
torch.backends.cudnn.deterministic = True
|
35 |
+
torch.backends.cudnn.benchmark = False
|
36 |
+
|
37 |
+
def setup_logging(log_dir='data/logs'):
|
38 |
+
"""Setup logging configuration"""
|
39 |
+
# Create logs directory if it doesn't exist
|
40 |
+
os.makedirs(log_dir, exist_ok=True)
|
41 |
+
|
42 |
+
# Create timestamp for log file
|
43 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
44 |
+
log_file = os.path.join(log_dir, f'training_log_{timestamp}.log')
|
45 |
+
|
46 |
+
# Configure logging
|
47 |
+
logging.basicConfig(
|
48 |
+
level=logging.INFO, # Back to INFO level
|
49 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
50 |
+
handlers=[
|
51 |
+
logging.FileHandler(log_file),
|
52 |
+
logging.StreamHandler() # Also print to console
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
logger = logging.getLogger(__name__)
|
57 |
+
logger.info(f"Logging initialized. Log file: {log_file}")
|
58 |
+
return logger, log_file
|
59 |
+
|
60 |
+
def check_gpu_availability():
|
61 |
+
"""Check and print GPU availability information"""
|
62 |
+
logger = logging.getLogger(__name__)
|
63 |
+
logger.info("=== GPU Availability Check ===")
|
64 |
+
|
65 |
+
if torch.backends.mps.is_available():
|
66 |
+
logger.info("✓ MPS (Apple Silicon GPU) is available")
|
67 |
+
if torch.backends.mps.is_built():
|
68 |
+
logger.info("✓ MPS is built into PyTorch")
|
69 |
+
else:
|
70 |
+
logger.info("✗ MPS is not built into PyTorch")
|
71 |
+
else:
|
72 |
+
logger.info("✗ MPS (Apple Silicon GPU) is not available")
|
73 |
+
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
logger.info(f"✓ CUDA is available (GPU count: {torch.cuda.device_count()})")
|
76 |
+
else:
|
77 |
+
logger.info("✗ CUDA is not available")
|
78 |
+
|
79 |
+
logger.info(f"PyTorch version: {torch.__version__}")
|
80 |
+
logger.info("=" * 50)
|
81 |
+
|
82 |
+
def calculate_class_weights(dataset):
|
83 |
+
"""Calculate class weights for imbalanced dataset using BERT paper approach"""
|
84 |
+
logger = logging.getLogger(__name__)
|
85 |
+
|
86 |
+
# Collect all labels from the dataset (BERT approach: only first subtokens have real labels)
|
87 |
+
all_labels = []
|
88 |
+
for window_data in dataset.processed_data:
|
89 |
+
# Filter out -100 labels (special tokens + subsequent subtokens of same word)
|
90 |
+
# This gives us true word-level class distribution
|
91 |
+
valid_labels = [label for label in window_data['subword_labels'] if label != -100]
|
92 |
+
all_labels.extend(valid_labels)
|
93 |
+
|
94 |
+
# Convert to numpy array
|
95 |
+
y = np.array(all_labels)
|
96 |
+
|
97 |
+
# Calculate class weights using sklearn
|
98 |
+
classes = np.unique(y)
|
99 |
+
class_weights = compute_class_weight('balanced', classes=classes, y=y)
|
100 |
+
|
101 |
+
# Create weight tensor
|
102 |
+
weight_tensor = torch.FloatTensor(class_weights)
|
103 |
+
|
104 |
+
logger.info(f"Word-level class distribution: {np.bincount(y)}")
|
105 |
+
logger.info(f"Class 0 (Non-instruction words): {np.sum(y == 0)} words ({np.sum(y == 0)/len(y)*100:.1f}%)")
|
106 |
+
logger.info(f"Class 1 (Instruction words): {np.sum(y == 1)} words ({np.sum(y == 1)/len(y)*100:.1f}%)")
|
107 |
+
logger.info(f"Calculated class weights (word-level): {class_weights}")
|
108 |
+
logger.info(f" Weight for class 0 (Non-instruction): {class_weights[0]:.4f}")
|
109 |
+
logger.info(f" Weight for class 1 (Instruction): {class_weights[1]:.4f}")
|
110 |
+
|
111 |
+
return weight_tensor
|
112 |
+
|
113 |
+
class FocalLoss(nn.Module):
|
114 |
+
"""Focal Loss for addressing class imbalance"""
|
115 |
+
def __init__(self, alpha=1, gamma=2, ignore_index=-100):
|
116 |
+
super(FocalLoss, self).__init__()
|
117 |
+
self.alpha = alpha
|
118 |
+
self.gamma = gamma
|
119 |
+
self.ignore_index = ignore_index
|
120 |
+
|
121 |
+
def forward(self, inputs, targets):
|
122 |
+
# Flatten inputs and targets
|
123 |
+
inputs = inputs.view(-1, inputs.size(-1))
|
124 |
+
targets = targets.view(-1)
|
125 |
+
|
126 |
+
# Create mask for non-ignored indices
|
127 |
+
mask = targets != self.ignore_index
|
128 |
+
targets = targets[mask]
|
129 |
+
inputs = inputs[mask]
|
130 |
+
|
131 |
+
if len(targets) == 0:
|
132 |
+
return torch.tensor(0.0, requires_grad=True, device=inputs.device)
|
133 |
+
|
134 |
+
# Calculate cross entropy
|
135 |
+
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
|
136 |
+
|
137 |
+
# Calculate pt
|
138 |
+
pt = torch.exp(-ce_loss)
|
139 |
+
|
140 |
+
# Calculate focal loss
|
141 |
+
focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
|
142 |
+
|
143 |
+
return focal_loss.mean()
|
144 |
+
|
145 |
+
class InstructionDataset(Dataset):
|
146 |
+
def __init__(self, data_path: str, tokenizer, max_length: int = 512, is_training: bool = True,
|
147 |
+
window_size: int = 512, overlap: int = 100):
|
148 |
+
self.tokenizer = tokenizer
|
149 |
+
self.max_length = max_length
|
150 |
+
self.is_training = is_training
|
151 |
+
self.window_size = window_size
|
152 |
+
self.overlap = overlap
|
153 |
+
|
154 |
+
# Load and process data
|
155 |
+
self.raw_data = self._load_and_process_data(data_path)
|
156 |
+
|
157 |
+
# Create sliding windows at subword level (eliminates all data loss)
|
158 |
+
self.processed_data = self._create_subword_sliding_windows(self.raw_data)
|
159 |
+
|
160 |
+
def _load_and_process_data(self, data_path: str) -> List[Dict[str, Any]]:
|
161 |
+
"""Load JSONL data and process it for token classification"""
|
162 |
+
logger = logging.getLogger(__name__)
|
163 |
+
processed_data = []
|
164 |
+
skipped_count = 0
|
165 |
+
sanity_check_failed = 0
|
166 |
+
total_instruction_tokens = 0
|
167 |
+
total_non_instruction_tokens = 0
|
168 |
+
|
169 |
+
logger.info(f"Loading data from: {data_path}")
|
170 |
+
|
171 |
+
with open(data_path, 'r', encoding='utf-8') as f:
|
172 |
+
for line_num, line in enumerate(f, 1):
|
173 |
+
try:
|
174 |
+
data = json.loads(line.strip())
|
175 |
+
|
176 |
+
# Skip data points that failed sanity check
|
177 |
+
sanity_check = data.get('sanity_check', False) # Default to False if not present
|
178 |
+
if sanity_check is False:
|
179 |
+
sanity_check_failed += 1
|
180 |
+
continue
|
181 |
+
|
182 |
+
# Extract labeled text
|
183 |
+
labeled_text = data.get('label_text', '')
|
184 |
+
# Remove <text>...</text> tags if present
|
185 |
+
if labeled_text.startswith("<text>") and labeled_text.endswith("</text>"):
|
186 |
+
labeled_text = labeled_text[len("<text>"):-len("</text>")]
|
187 |
+
labeled_text = labeled_text.strip()
|
188 |
+
sample_id = data.get('id', f'sample_{line_num}')
|
189 |
+
|
190 |
+
# Process the tagged text
|
191 |
+
processed_sample = self._process_tagged_text(labeled_text, sample_id)
|
192 |
+
|
193 |
+
if processed_sample is not None:
|
194 |
+
processed_data.append(processed_sample)
|
195 |
+
# Count token distribution for debugging
|
196 |
+
labels = processed_sample['labels']
|
197 |
+
sample_instruction_tokens = sum(1 for label in labels if label == 1)
|
198 |
+
total_instruction_tokens += sample_instruction_tokens
|
199 |
+
total_non_instruction_tokens += len(labels) - sample_instruction_tokens
|
200 |
+
else:
|
201 |
+
skipped_count += 1
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
logger.error(f"Error processing line {line_num}: {e}")
|
205 |
+
skipped_count += 1
|
206 |
+
|
207 |
+
logger.info(f"Successfully processed {len(processed_data)} samples")
|
208 |
+
logger.info(f"Skipped {skipped_count} samples due to errors or malformed data")
|
209 |
+
logger.info(f"Skipped {sanity_check_failed} samples due to failed sanity check")
|
210 |
+
logger.info(f"Token distribution - Instruction: {total_instruction_tokens}, Non-instruction: {total_non_instruction_tokens}")
|
211 |
+
|
212 |
+
if total_instruction_tokens == 0:
|
213 |
+
logger.warning("No instruction tokens found! This will cause training issues.")
|
214 |
+
if total_non_instruction_tokens == 0:
|
215 |
+
logger.warning("No non-instruction tokens found! This will cause training issues.")
|
216 |
+
|
217 |
+
return processed_data
|
218 |
+
|
219 |
+
def _process_tagged_text(self, labeled_text: str, sample_id: str) -> Dict[str, Any] | None:
|
220 |
+
"""Process tagged text to extract tokens and labels"""
|
221 |
+
logger = logging.getLogger(__name__)
|
222 |
+
try:
|
223 |
+
# Keep original casing since XLM-RoBERTa is case-sensitive
|
224 |
+
# labeled_text = labeled_text.lower() # Removed for cased model
|
225 |
+
|
226 |
+
# Find all instruction tags
|
227 |
+
instruction_pattern = r'<instruction>(.*?)</instruction>'
|
228 |
+
matches = list(re.finditer(instruction_pattern, labeled_text, re.DOTALL))
|
229 |
+
|
230 |
+
# Check for malformed tags or edge cases
|
231 |
+
if '<instruction>' in labeled_text and '</instruction>' not in labeled_text:
|
232 |
+
return None
|
233 |
+
if '</instruction>' in labeled_text and '<instruction>' not in labeled_text:
|
234 |
+
return None
|
235 |
+
|
236 |
+
# Create character-level labels
|
237 |
+
char_labels = [0] * len(labeled_text)
|
238 |
+
|
239 |
+
# Mark instruction characters
|
240 |
+
for match in matches:
|
241 |
+
start, end = match.span()
|
242 |
+
# Mark the content inside tags as instruction (1)
|
243 |
+
content_start = start + len('<instruction>')
|
244 |
+
content_end = end - len('</instruction>')
|
245 |
+
for i in range(content_start, content_end):
|
246 |
+
char_labels[i] = 1
|
247 |
+
|
248 |
+
# Remove tags and adjust labels
|
249 |
+
clean_text = re.sub(instruction_pattern, r'\1', labeled_text)
|
250 |
+
|
251 |
+
# Recalculate labels for clean text
|
252 |
+
clean_char_labels = []
|
253 |
+
original_idx = 0
|
254 |
+
|
255 |
+
for char in clean_text:
|
256 |
+
# Skip over tag characters in original text
|
257 |
+
while original_idx < len(labeled_text) and labeled_text[original_idx] in '<>/':
|
258 |
+
if labeled_text[original_idx:original_idx+13] == '<instruction>':
|
259 |
+
original_idx += 13
|
260 |
+
elif labeled_text[original_idx:original_idx+14] == '</instruction>':
|
261 |
+
original_idx += 14
|
262 |
+
else:
|
263 |
+
original_idx += 1
|
264 |
+
|
265 |
+
if original_idx < len(char_labels):
|
266 |
+
clean_char_labels.append(char_labels[original_idx])
|
267 |
+
else:
|
268 |
+
clean_char_labels.append(0)
|
269 |
+
original_idx += 1
|
270 |
+
|
271 |
+
# Tokenize and align labels
|
272 |
+
tokens = clean_text.split()
|
273 |
+
token_labels = []
|
274 |
+
|
275 |
+
char_idx = 0
|
276 |
+
for token in tokens:
|
277 |
+
# Skip whitespace
|
278 |
+
while char_idx < len(clean_text) and clean_text[char_idx].isspace():
|
279 |
+
char_idx += 1
|
280 |
+
|
281 |
+
# Check if any character in this token is labeled as instruction
|
282 |
+
token_is_instruction = False
|
283 |
+
for i in range(len(token)):
|
284 |
+
if char_idx + i < len(clean_char_labels) and clean_char_labels[char_idx + i] == 1:
|
285 |
+
token_is_instruction = True
|
286 |
+
break
|
287 |
+
|
288 |
+
token_labels.append(1 if token_is_instruction else 0)
|
289 |
+
char_idx += len(token)
|
290 |
+
|
291 |
+
return {
|
292 |
+
'id': sample_id,
|
293 |
+
'tokens': tokens,
|
294 |
+
'labels': token_labels,
|
295 |
+
'original_text': clean_text
|
296 |
+
}
|
297 |
+
|
298 |
+
except Exception as e:
|
299 |
+
logger.error(f"Error processing sample {sample_id}: {e}")
|
300 |
+
return None
|
301 |
+
|
302 |
+
def _create_subword_sliding_windows(self, raw_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
303 |
+
"""Create sliding windows at subword level - eliminates all data loss and mismatch issues"""
|
304 |
+
logger = logging.getLogger(__name__)
|
305 |
+
windowed_data = []
|
306 |
+
|
307 |
+
logger.info(f"Creating subword-level sliding windows:")
|
308 |
+
logger.info(f" Window size: {self.max_length} subword tokens")
|
309 |
+
logger.info(f" Overlap: {self.overlap} subword tokens")
|
310 |
+
logger.info(f" Label strategy: BERT paper approach (first subtoken only)")
|
311 |
+
|
312 |
+
total_original_samples = len(raw_data)
|
313 |
+
total_windows = 0
|
314 |
+
samples_with_multiple_windows = 0
|
315 |
+
|
316 |
+
# Word split tracking
|
317 |
+
total_words_processed = 0
|
318 |
+
total_words_split_across_windows = 0
|
319 |
+
samples_with_split_words = 0
|
320 |
+
|
321 |
+
for sample in raw_data:
|
322 |
+
words = sample['tokens']
|
323 |
+
word_labels = sample['labels']
|
324 |
+
sample_id = sample['id']
|
325 |
+
encoded = self.tokenizer(
|
326 |
+
words,
|
327 |
+
is_split_into_words=True,
|
328 |
+
add_special_tokens=True, # Include [CLS], [SEP]
|
329 |
+
truncation=False, # We handle long sequences with sliding windows
|
330 |
+
padding=False,
|
331 |
+
return_tensors='pt'
|
332 |
+
)
|
333 |
+
subword_tokens = encoded['input_ids'][0].tolist()
|
334 |
+
word_ids = encoded.word_ids()
|
335 |
+
|
336 |
+
# Step 2: Create aligned subword labels (BERT paper approach)
|
337 |
+
# Only the FIRST subtoken of each word gets the real label, rest get -100
|
338 |
+
subword_labels = []
|
339 |
+
prev_word_id = None
|
340 |
+
|
341 |
+
for word_id in word_ids:
|
342 |
+
if word_id is None:
|
343 |
+
subword_labels.append(-100) # Special tokens [CLS], [SEP]
|
344 |
+
elif word_id != prev_word_id:
|
345 |
+
# First subtoken of a new word - assign the real label
|
346 |
+
subword_labels.append(word_labels[word_id])
|
347 |
+
prev_word_id = word_id
|
348 |
+
else:
|
349 |
+
# Subsequent subtoken of the same word - assign dummy label
|
350 |
+
subword_labels.append(-100)
|
351 |
+
# prev_word_id remains the same
|
352 |
+
|
353 |
+
# Step 3: Create sliding windows at subword level
|
354 |
+
if len(subword_tokens) <= self.max_length:
|
355 |
+
# Single window - no word splits possible
|
356 |
+
windowed_data.append({
|
357 |
+
'subword_tokens': subword_tokens,
|
358 |
+
'subword_labels': subword_labels,
|
359 |
+
'original_words': words,
|
360 |
+
'original_labels': word_labels,
|
361 |
+
'sample_id': sample_id,
|
362 |
+
'window_id': 0,
|
363 |
+
'total_windows': 1,
|
364 |
+
'window_start': 0,
|
365 |
+
'window_end': len(subword_tokens),
|
366 |
+
'original_text': sample['original_text']
|
367 |
+
})
|
368 |
+
total_windows += 1
|
369 |
+
total_words_processed += len(words)
|
370 |
+
else:
|
371 |
+
# Multiple windows needed
|
372 |
+
step = self.max_length - self.overlap
|
373 |
+
window_count = 0
|
374 |
+
split_words_this_sample = set()
|
375 |
+
|
376 |
+
for start in range(0, len(subword_tokens), step):
|
377 |
+
end = min(start + self.max_length, len(subword_tokens))
|
378 |
+
|
379 |
+
# Extract subword window
|
380 |
+
window_subword_tokens = subword_tokens[start:end]
|
381 |
+
window_subword_labels = subword_labels[start:end]
|
382 |
+
|
383 |
+
# Track word splits for this window
|
384 |
+
window_word_ids = word_ids[start:end] if word_ids else []
|
385 |
+
window_words_set = set(wid for wid in window_word_ids if wid is not None)
|
386 |
+
|
387 |
+
# Find which words are split across window boundaries
|
388 |
+
for word_idx in window_words_set:
|
389 |
+
if word_idx is not None:
|
390 |
+
# Check if this word's subwords extend beyond current window
|
391 |
+
word_subword_positions = [i for i, wid in enumerate(word_ids) if wid == word_idx]
|
392 |
+
word_start_pos = min(word_subword_positions)
|
393 |
+
word_end_pos = max(word_subword_positions)
|
394 |
+
|
395 |
+
# Word is split if it extends beyond current window boundaries
|
396 |
+
if word_start_pos < start or word_end_pos >= end:
|
397 |
+
split_words_this_sample.add(word_idx)
|
398 |
+
|
399 |
+
# Get original words for this window (for debugging/inspection)
|
400 |
+
window_word_indices = list(window_words_set)
|
401 |
+
window_original_words = [words[i] for i in window_word_indices if i < len(words)]
|
402 |
+
window_original_labels = [word_labels[i] for i in window_word_indices if i < len(words)]
|
403 |
+
|
404 |
+
windowed_data.append({
|
405 |
+
'subword_tokens': window_subword_tokens,
|
406 |
+
'subword_labels': window_subword_labels,
|
407 |
+
'original_words': window_original_words, # For reference only
|
408 |
+
'original_labels': window_original_labels, # For reference only
|
409 |
+
'sample_id': sample_id,
|
410 |
+
'window_id': window_count,
|
411 |
+
'total_windows': -1, # Will be filled later
|
412 |
+
'window_start': start,
|
413 |
+
'window_end': end,
|
414 |
+
'original_text': sample['original_text']
|
415 |
+
})
|
416 |
+
|
417 |
+
window_count += 1
|
418 |
+
total_windows += 1
|
419 |
+
|
420 |
+
# Break if we've covered all subword tokens
|
421 |
+
if end >= len(subword_tokens):
|
422 |
+
break
|
423 |
+
|
424 |
+
# Update total_windows for this sample
|
425 |
+
for i in range(len(windowed_data) - window_count, len(windowed_data)):
|
426 |
+
windowed_data[i]['total_windows'] = window_count
|
427 |
+
|
428 |
+
# Track word split statistics
|
429 |
+
total_words_processed += len(words)
|
430 |
+
total_words_split_across_windows += len(split_words_this_sample)
|
431 |
+
|
432 |
+
if len(split_words_this_sample) > 0:
|
433 |
+
samples_with_split_words += 1
|
434 |
+
|
435 |
+
if window_count > 1:
|
436 |
+
samples_with_multiple_windows += 1
|
437 |
+
|
438 |
+
# Calculate word split statistics
|
439 |
+
word_split_percentage = (total_words_split_across_windows / total_words_processed * 100) if total_words_processed > 0 else 0
|
440 |
+
|
441 |
+
logger.info(f"=== Subword Sliding Window Statistics ===")
|
442 |
+
logger.info(f" Original samples: {total_original_samples}")
|
443 |
+
logger.info(f" Total windows created: {total_windows}")
|
444 |
+
logger.info(f" Samples split into multiple windows: {samples_with_multiple_windows}")
|
445 |
+
logger.info(f" Average windows per sample: {total_windows / total_original_samples:.2f}")
|
446 |
+
|
447 |
+
logger.info(f"=== Word Split Analysis ===")
|
448 |
+
logger.info(f" Total words processed: {total_words_processed:,}")
|
449 |
+
logger.info(f" Words split across windows: {total_words_split_across_windows:,}")
|
450 |
+
logger.info(f" Word split rate: {word_split_percentage:.2f}%")
|
451 |
+
logger.info(f" Samples with split words: {samples_with_split_words} / {total_original_samples}")
|
452 |
+
|
453 |
+
if word_split_percentage > 10.0:
|
454 |
+
logger.warning(f" HIGH WORD SPLIT RATE: {word_split_percentage:.1f}% - consider larger overlap")
|
455 |
+
elif word_split_percentage > 5.0:
|
456 |
+
logger.warning(f" Moderate word splitting: {word_split_percentage:.1f}% - monitor model performance")
|
457 |
+
else:
|
458 |
+
logger.info(f" Excellent word preservation: {100 - word_split_percentage:.1f}% of words intact")
|
459 |
+
|
460 |
+
logger.info(f"✅ ZERO DATA LOSS: All subword tokens processed exactly once")
|
461 |
+
logger.info(f"📋 BERT PAPER APPROACH: Only first subtokens carry labels for training/evaluation")
|
462 |
+
|
463 |
+
return windowed_data
|
464 |
+
|
465 |
+
def __len__(self):
|
466 |
+
return len(self.processed_data)
|
467 |
+
|
468 |
+
def __getitem__(self, idx):
|
469 |
+
window_data = self.processed_data[idx]
|
470 |
+
subword_tokens = window_data['subword_tokens']
|
471 |
+
subword_labels = window_data['subword_labels']
|
472 |
+
|
473 |
+
# Convert subword tokens to padded tensors (no tokenization needed!)
|
474 |
+
input_ids = subword_tokens[:self.max_length] # Guaranteed to fit
|
475 |
+
|
476 |
+
# Pad to max_length if needed
|
477 |
+
pad_token_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
|
478 |
+
while len(input_ids) < self.max_length:
|
479 |
+
input_ids.append(pad_token_id)
|
480 |
+
|
481 |
+
# Create attention mask (1 for real tokens, 0 for padding)
|
482 |
+
attention_mask = [1 if token != pad_token_id else 0 for token in input_ids]
|
483 |
+
|
484 |
+
# Pad labels to match
|
485 |
+
labels = subword_labels[:self.max_length]
|
486 |
+
while len(labels) < self.max_length:
|
487 |
+
labels.append(-100) # Ignore padding tokens in loss
|
488 |
+
|
489 |
+
return {
|
490 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
491 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
492 |
+
'labels': torch.tensor(labels, dtype=torch.long),
|
493 |
+
'original_tokens': window_data['original_words'], # Original words for reference
|
494 |
+
'original_labels': window_data['original_labels'], # Original word labels
|
495 |
+
# Add window metadata for evaluation aggregation
|
496 |
+
'sample_id': window_data['sample_id'],
|
497 |
+
'window_id': window_data['window_id'],
|
498 |
+
'total_windows': window_data['total_windows'],
|
499 |
+
'window_start': window_data['window_start'],
|
500 |
+
'window_end': window_data['window_end']
|
501 |
+
}
|
502 |
+
|
503 |
+
class TransformerInstructionClassifier(nn.Module):
|
504 |
+
def __init__(self, model_name: str = 'xlm-roberta-base', num_labels: int = 2,
|
505 |
+
class_weights=None, loss_type='weighted_ce', dropout: float = 0.1):
|
506 |
+
super().__init__()
|
507 |
+
self.num_labels = num_labels
|
508 |
+
self.loss_type = loss_type
|
509 |
+
|
510 |
+
# Load pre-trained transformer model (XLM-RoBERTa, ModernBERT, etc.)
|
511 |
+
self.bert = AutoModel.from_pretrained(model_name)
|
512 |
+
self.dropout = nn.Dropout(dropout)
|
513 |
+
|
514 |
+
# Classification head
|
515 |
+
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
|
516 |
+
|
517 |
+
# Setup loss function based on type
|
518 |
+
if loss_type == 'weighted_ce':
|
519 |
+
self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100, weight=class_weights)
|
520 |
+
elif loss_type == 'focal':
|
521 |
+
self.loss_fct = FocalLoss(alpha=1, gamma=2, ignore_index=-100)
|
522 |
+
else:
|
523 |
+
self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
524 |
+
|
525 |
+
def forward(self, input_ids, attention_mask, labels=None):
|
526 |
+
# Get BERT outputs
|
527 |
+
outputs = self.bert(
|
528 |
+
input_ids=input_ids,
|
529 |
+
attention_mask=attention_mask
|
530 |
+
)
|
531 |
+
|
532 |
+
# Get last hidden state
|
533 |
+
last_hidden_state = outputs.last_hidden_state
|
534 |
+
|
535 |
+
# Apply dropout
|
536 |
+
last_hidden_state = self.dropout(last_hidden_state)
|
537 |
+
|
538 |
+
# Classification
|
539 |
+
logits = self.classifier(last_hidden_state)
|
540 |
+
|
541 |
+
loss = None
|
542 |
+
if labels is not None:
|
543 |
+
logger = logging.getLogger(__name__)
|
544 |
+
|
545 |
+
# Check for NaN in inputs before loss calculation
|
546 |
+
if torch.isnan(logits).any():
|
547 |
+
logger.warning("NaN detected in logits!")
|
548 |
+
if torch.isnan(labels.float()).any():
|
549 |
+
logger.warning("NaN detected in labels!")
|
550 |
+
|
551 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
552 |
+
|
553 |
+
# Check if loss is NaN
|
554 |
+
if torch.isnan(loss):
|
555 |
+
logger.warning("NaN loss detected!")
|
556 |
+
logger.warning(f"Logits stats: min={logits.min()}, max={logits.max()}, mean={logits.mean()}")
|
557 |
+
logger.warning(f"Labels unique values: {torch.unique(labels[labels != -100])}")
|
558 |
+
|
559 |
+
return {
|
560 |
+
'loss': loss,
|
561 |
+
'logits': logits
|
562 |
+
}
|
563 |
+
|
564 |
+
def collate_fn(batch):
|
565 |
+
"""Custom collate function for DataLoader"""
|
566 |
+
input_ids = torch.stack([item['input_ids'] for item in batch])
|
567 |
+
attention_mask = torch.stack([item['attention_mask'] for item in batch])
|
568 |
+
labels = torch.stack([item['labels'] for item in batch])
|
569 |
+
|
570 |
+
return {
|
571 |
+
'input_ids': input_ids,
|
572 |
+
'attention_mask': attention_mask,
|
573 |
+
'labels': labels,
|
574 |
+
'original_tokens': [item['original_tokens'] for item in batch],
|
575 |
+
'original_labels': [item['original_labels'] for item in batch],
|
576 |
+
# Add window metadata
|
577 |
+
'sample_ids': [item['sample_id'] for item in batch],
|
578 |
+
'window_ids': [item['window_id'] for item in batch],
|
579 |
+
'total_windows': [item['total_windows'] for item in batch],
|
580 |
+
'window_starts': [item['window_start'] for item in batch],
|
581 |
+
'window_ends': [item['window_end'] for item in batch]
|
582 |
+
}
|
583 |
+
|
584 |
+
def predict_instructions(model, tokenizer, text: str, device=None):
|
585 |
+
"""Predict instructions in a given text"""
|
586 |
+
# Auto-detect device if not provided
|
587 |
+
if device is None:
|
588 |
+
if torch.backends.mps.is_available():
|
589 |
+
device = torch.device('mps')
|
590 |
+
elif torch.cuda.is_available():
|
591 |
+
device = torch.device('cuda')
|
592 |
+
else:
|
593 |
+
device = torch.device('cpu')
|
594 |
+
|
595 |
+
model.eval()
|
596 |
+
|
597 |
+
# Keep original casing since XLM-RoBERTa is case-sensitive
|
598 |
+
# text = text.lower() # Removed for cased model
|
599 |
+
tokens = text.split()
|
600 |
+
|
601 |
+
# Tokenize
|
602 |
+
encoded = tokenizer(
|
603 |
+
tokens,
|
604 |
+
is_split_into_words=True,
|
605 |
+
padding='max_length',
|
606 |
+
truncation=True,
|
607 |
+
max_length=512,
|
608 |
+
return_tensors='pt'
|
609 |
+
)
|
610 |
+
|
611 |
+
input_ids = encoded['input_ids'].to(device)
|
612 |
+
attention_mask = encoded['attention_mask'].to(device)
|
613 |
+
|
614 |
+
with torch.no_grad():
|
615 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
616 |
+
predictions = torch.argmax(outputs['logits'], dim=-1)
|
617 |
+
|
618 |
+
# Align predictions with original tokens
|
619 |
+
word_ids = encoded.word_ids()
|
620 |
+
word_predictions = []
|
621 |
+
|
622 |
+
prev_word_id = None
|
623 |
+
for i, word_id in enumerate(word_ids):
|
624 |
+
if word_id is not None and word_id != prev_word_id:
|
625 |
+
if word_id < len(tokens):
|
626 |
+
word_predictions.append(predictions[0][i].item())
|
627 |
+
prev_word_id = word_id
|
628 |
+
|
629 |
+
return tokens, word_predictions
|
630 |
+
|
631 |
+
def get_device():
|
632 |
+
"""Get the best available device"""
|
633 |
+
if torch.backends.mps.is_available():
|
634 |
+
return torch.device('mps')
|
635 |
+
elif torch.cuda.is_available():
|
636 |
+
return torch.device('cuda')
|
637 |
+
else:
|
638 |
+
return torch.device('cpu')
|