Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,992 Bytes
82af392 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
"""
Standalone instruction classifier module for prompt injection defense
Integrates the instruction classifier model to sanitize tool outputs
"""
import os
import re
import json
import tempfile
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, AutoModel
import importlib.util
from pathlib import Path
import logging
from typing import List, Tuple, Dict, Any
import numpy as np
try:
from huggingface_hub import hf_hub_download
except ImportError:
hf_hub_download = None
# Import required components from utils.py
from utils import (
TransformerInstructionClassifier,
InstructionDataset,
collate_fn,
get_device
)
class InstructionClassifierSanitizer:
"""
Uses a trained instruction classifier model to detect and remove prompt injections
from tool outputs by identifying instruction tokens and removing them.
"""
def __init__(
self,
model_path: str = None,
model_repo_id: str = "ddas/instruction-classifier-model", # CHANGE THIS!
model_filename: str = "best_instruction_classifier.pth",
model_name: str = "xlm-roberta-base",
threshold: float = 0.01,
max_length: int = 512,
overlap: int = 256,
use_local_model: bool = False # Set to False to use HF Hub
):
"""
Initialize the instruction classifier sanitizer
Args:
model_path: Path to local model file (if use_local_model=True)
model_repo_id: Hugging Face model repository ID (if use_local_model=False)
model_filename: Filename of the model in the HF repository
model_name: Base transformer model name
threshold: Threshold for instruction detection (proportion of instruction tokens)
max_length: Maximum sequence length for sliding windows
overlap: Overlap between sliding windows
use_local_model: Whether to use local model file or download from HF Hub
"""
self.model_name = model_name
self.threshold = threshold
self.max_length = max_length
self.overlap = overlap
self.use_local_model = use_local_model
self.model_repo_id = model_repo_id
self.model_filename = model_filename
# Initialize device
self.device = get_device()
# Map friendly names to actual model names
model_mapping = {
'modern-bert-base': 'answerdotai/ModernBERT-base',
'xlm-roberta-base': 'xlm-roberta-base'
}
actual_model_name = model_mapping.get(model_name, model_name)
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(actual_model_name)
# Load model
self.model = TransformerInstructionClassifier(
model_name=actual_model_name,
num_labels=2,
dropout=0.1
)
# Load trained weights
if self.use_local_model:
# Use local model file
if model_path is None:
model_path = "models/best_instruction_classifier.pth"
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location=self.device)
self._load_model_weights(checkpoint)
print(f"β
Loaded instruction classifier model from {model_path}")
else:
raise FileNotFoundError(f"Model file not found: {model_path}")
else:
# Download from Hugging Face Hub
try:
if hf_hub_download is None:
raise ImportError("huggingface_hub is not installed")
# Use HF_TOKEN from environment for private repositories
token = os.getenv('HF_TOKEN')
if token:
print(f"π₯ Downloading private model from {self.model_repo_id}...")
else:
print(f"π₯ Downloading public model from {self.model_repo_id}...")
# Download the model file (returns file path, not model object)
model_path = hf_hub_download(
repo_id=self.model_repo_id,
filename=self.model_filename,
cache_dir="./model_cache",
token=token # Will be None for public repos
)
print(f"β
Model file downloaded to: {model_path}")
# Load the checkpoint from the downloaded file
checkpoint = torch.load(model_path, map_location=self.device)
self._load_model_weights(checkpoint)
print(f"β
Model weights loaded from {self.model_repo_id}")
except Exception as e:
print(f"β Failed to download model from {self.model_repo_id}: {e}")
print("Full error details:")
import traceback
traceback.print_exc()
raise RuntimeError(f"Failed to download model from {self.model_repo_id}: {e}")
def _load_model_weights(self, checkpoint):
"""Helper method to load model weights with filtering"""
# Filter out keys that don't belong to the model (like loss function weights)
model_state_dict = {}
for key, value in checkpoint.items():
if not key.startswith('loss_fct'): # Skip loss function weights
model_state_dict[key] = value
# Load the filtered state dict
self.model.load_state_dict(model_state_dict, strict=False)
self.model.to(self.device)
self.model.eval()
def sanitize_tool_output(self, tool_output: str) -> str:
"""
Main sanitization function that processes tool output and removes instruction content
Args:
tool_output: The raw tool output string
Returns:
Sanitized tool output with instruction content removed
"""
if not tool_output or not tool_output.strip():
return tool_output
try:
# Step 1: Detect if the tool output contains instructions
is_injection, confidence_score, tagged_text = self._detect_injection(tool_output)
print(f"π Instruction detection: injection={is_injection}, confidence={confidence_score:.3f}")
if not is_injection:
print("β
No injection detected - returning original output")
return tool_output
print(f"π¨ Injection detected! Sanitizing output...")
print(f" Original: {tool_output}")
print(f" Tagged: {tagged_text}")
# Step 2: Merge close instruction tags
merged_tagged_text = self._merge_close_instruction_tags(tagged_text, min_words_between=4)
print(f" After merging: {merged_tagged_text}")
# Step 3: Remove instruction tags and their content
sanitized_output = self._remove_instruction_tags(merged_tagged_text)
print(f" Sanitized: {sanitized_output}")
return sanitized_output
except Exception as e:
print(f"β Error in instruction classifier sanitization: {e}")
# Return original output if sanitization fails
return tool_output
def _detect_injection(self, tool_output: str) -> Tuple[bool, float, str]:
"""
Detect if the tool output contains instructions that could indicate prompt injection.
Returns:
tuple: (is_injection, confidence_score, tagged_text) where:
- is_injection: boolean indicating if injection was detected
- confidence_score: proportion of tokens classified as instructions
- tagged_text: original text with <instruction> tags for debugging
"""
if not tool_output.strip():
return False, 0.0, ""
try:
# Use InstructionDataset sliding window logic for raw text inference
predictions, original_tokens = self._predict_with_sliding_windows(tool_output)
if not predictions:
return False, 0.0, ""
# Calculate the proportion of tokens classified as instructions (label 1)
instruction_tokens = sum(1 for pred in predictions if pred == 1)
total_tokens = len(predictions)
confidence_score = instruction_tokens / total_tokens if total_tokens > 0 else 0.0
# Determine if this is considered an injection based on threshold
is_injection = confidence_score > self.threshold
# Only reconstruct with tags if injection detected
if is_injection:
tagged_text = self._reconstruct_text_with_tags(original_tokens, predictions)
else:
tagged_text = tool_output
return is_injection, confidence_score, tagged_text
except Exception as e:
print(f"Error in instruction classifier detection: {e}")
return False, 0.0, ""
def _predict_with_sliding_windows(self, text: str) -> Tuple[List[int], List[str]]:
"""
Simplified prediction using the predict_instructions function from utils.py
This is more direct and avoids complex aggregation logic.
"""
from utils import predict_instructions
try:
# Use the predict_instructions function directly
tokens, predictions = predict_instructions(self.model, self.tokenizer, text, self.device)
return predictions, tokens
except Exception as e:
print(f"Error in predict_instructions: {e}")
# Fallback to simple tokenization if the complex method fails
return self._simple_predict(text)
def _simple_predict(self, text: str) -> Tuple[List[int], List[str]]:
"""
Simple fallback prediction method without sliding windows
"""
words = text.split()
if not words:
return [], []
# Tokenize with word alignment
encoded = self.tokenizer(
words,
is_split_into_words=True,
add_special_tokens=True,
truncation=True,
padding=True,
max_length=self.max_length,
return_tensors='pt'
)
# Move to device
input_ids = encoded['input_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
# Predict
self.model.eval()
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
predictions = torch.argmax(outputs['logits'], dim=-1)
# Convert back to word-level predictions
word_ids = encoded.word_ids()
word_predictions = []
prev_word_id = None
for i, word_id in enumerate(word_ids):
if word_id is not None and word_id != prev_word_id:
if word_id < len(words):
pred_idx = min(i, predictions.shape[1] - 1)
word_predictions.append(predictions[0, pred_idx].item())
prev_word_id = word_id
# Ensure same length
while len(word_predictions) < len(words):
word_predictions.append(0)
return word_predictions[:len(words)], words
def _convert_subword_to_word_predictions(self, subword_tokens, subword_predictions, original_text):
"""Convert aggregated subword predictions back to word-level predictions"""
# Simple approach: re-tokenize original text and align
original_words = original_text.split()
# Use tokenizer to get word alignment
encoded = self.tokenizer(
original_words,
is_split_into_words=True,
add_special_tokens=True,
truncation=False,
padding=False,
return_tensors='pt'
)
word_ids = encoded.word_ids()
word_predictions = []
# Extract word-level predictions using BERT approach
prev_word_id = None
subword_idx = 0
for i, word_id in enumerate(word_ids):
if word_id is not None and word_id != prev_word_id:
# First subtoken of new word - use its prediction
if subword_idx < len(subword_predictions) and word_id < len(original_words):
word_predictions.append(subword_predictions[subword_idx])
prev_word_id = word_id
if subword_idx < len(subword_predictions):
subword_idx += 1
# Ensure same length
while len(word_predictions) < len(original_words):
word_predictions.append(0)
return word_predictions[:len(original_words)], original_words
def _reconstruct_text_with_tags(self, tokens, predictions):
"""Reconstruct text from tokens and predictions, adding instruction tags"""
if len(tokens) != len(predictions):
print(f"Length mismatch: tokens ({len(tokens)}) vs predictions ({len(predictions)})")
# Truncate to the shorter length to avoid crashes
min_length = min(len(tokens), len(predictions))
tokens = tokens[:min_length]
predictions = predictions[:min_length]
result_parts = []
current_instruction = []
for token, pred in zip(tokens, predictions):
if pred == 1: # INSTRUCTION
current_instruction.append(token)
else: # OTHER
# If we were building an instruction, close it
if current_instruction:
instruction_text = ' '.join(current_instruction)
result_parts.append(f'<instruction>{instruction_text}</instruction>')
current_instruction = []
# Add the non-instruction token
result_parts.append(token)
# Handle case where text ends with an instruction
if current_instruction:
instruction_text = ' '.join(current_instruction)
result_parts.append(f'<instruction>{instruction_text}</instruction>')
# Join with spaces
result = ' '.join(result_parts)
return result
def _merge_close_instruction_tags(self, text, min_words_between=3):
"""
Merge <instruction>...</instruction> segments that are separated by less than min_words_between words
"""
pattern = re.compile(r"(</instruction>)(\s+)([^<]+?)(\s+)(<instruction>)", re.DOTALL)
def should_merge(between_text):
# Count words in between_text
words = re.findall(r"\b\w+\b", between_text)
return len(words) < min_words_between
# Keep merging until no more merges are possible
changed = True
while changed:
changed = False
# Find all potential merge points in the current text
matches = list(pattern.finditer(text))
# Process matches from right to left to avoid position shifts
for match in reversed(matches):
between_text = match.group(3)
if should_merge(between_text):
# Merge: remove the tags between, include the in-between text inside the instruction tags
text = (
text[: match.start(1)] # Text before </instruction>
+ match.group(2) # Whitespace after </instruction>
+ between_text # Text between tags
+ match.group(4) # Whitespace before <instruction>
+ text[match.end(5):] # Text after <instruction>
)
changed = True
break # Start over since we changed the text
return text
def _remove_instruction_tags(self, text: str) -> str:
"""Remove all <instruction>...</instruction> tags and their content from text"""
# Pattern to match <instruction>...</instruction> tags (including nested content)
# Using non-greedy matching to handle multiple instruction blocks
pattern = r'<instruction>.*?</instruction>'
# Remove all instruction tags and their content
cleaned_text = re.sub(pattern, '', text, flags=re.DOTALL | re.IGNORECASE)
# Clean up any extra whitespace that might be left
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
return cleaned_text
# Global instance of the sanitizer
_sanitizer_instance = None
def get_sanitizer():
"""Get or create the global sanitizer instance"""
global _sanitizer_instance
if _sanitizer_instance is None:
try:
# For Hugging Face Spaces deployment, use external model hosting
# The model_repo_id is already set to "ddas/instruction-classifier-model"
print("π Initializing instruction classifier from Hugging Face Hub...")
_sanitizer_instance = InstructionClassifierSanitizer(
use_local_model=False,
model_repo_id="ddas/instruction-classifier-model"
)
print("β
Instruction classifier initialized successfully!")
except Exception as e:
print(f"β Failed to initialize instruction classifier from HF Hub: {e}")
print("π Falling back to local model if available...")
try:
_sanitizer_instance = InstructionClassifierSanitizer(use_local_model=True)
print("β
Local model initialized as fallback!")
except Exception as e2:
print(f"β Local model also failed: {e2}")
print("β οΈ Instruction classifier disabled - sanitization will be bypassed")
return None
return _sanitizer_instance
def sanitize_tool_output(tool_output):
"""
Main sanitization function that uses the instruction classifier to detect and remove
prompt injection attempts from tool outputs.
Args:
tool_output: The raw tool output string
Returns:
Sanitized tool output with instruction content removed
"""
sanitizer = get_sanitizer()
if sanitizer is None:
print("β οΈ Instruction classifier not available, returning original output")
return tool_output
return sanitizer.sanitize_tool_output(tool_output) |