Spaces:
Sleeping
Sleeping
File size: 6,260 Bytes
fbc2796 bf2578c 27419d7 90909c6 fbc2796 93e2204 90909c6 93e2204 fbc2796 93e2204 fbc2796 bf2578c 5d087ca bf2578c 5d087ca bf2578c 5d087ca 27419d7 5d087ca 93e2204 fbc2796 5d087ca 51621c3 50c822a 51621c3 27419d7 50c822a dc02cf0 50c822a 27419d7 50c822a 2ecd770 50c822a 2ecd770 27419d7 dc02cf0 3da548a 50c822a 5d087ca 90909c6 27419d7 90909c6 2ecd770 90909c6 3da548a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
import requests
from bs4 import BeautifulSoup
import json
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load model and tokenizer
@st.cache_resource
def load_model():
model = AutoModelForSeq2SeqLM.from_pretrained("shreyanshjha0709/watch-description-generator")
tokenizer = AutoTokenizer.from_pretrained("shreyanshjha0709/watch-description-generator")
return model, tokenizer
model, tokenizer = load_model()
# Load the JSON file from a URL
@st.cache_data
def load_json_from_url(url):
response = requests.get(url)
return response.json()
# Provide your JSON URL here
json_url = "https://www.ethoswatches.com/feeds/holbox_ai.json"
data = load_json_from_url(json_url)
# Extract unique brands
brands = sorted(list(set([item["brand"] for item in data])))
# Web Scraping function to get product description from Ethos website
def scrape_ethos_description(product_link):
try:
response = requests.get(product_link)
soup = BeautifulSoup(response.text, 'html.parser')
# Assuming product description is within a specific class or ID, find it
description = soup.find('div', class_='product-description') # Example class, adjust based on actual site structure
if description:
return description.get_text(strip=True)
else:
return "No detailed description available on Ethos site."
except Exception as e:
return f"Error fetching details from Ethos site: {str(e)}"
# Streamlit UI
st.title("Watch Description Generator")
# Select brand
selected_brand = st.selectbox("Select a Brand", ["Select"] + brands)
# Filter watches and SKUs by the selected brand
if selected_brand != "Select":
watches = [item["name"] for item in data if item["brand"] == selected_brand]
skus = [item["sku"] for item in data if item["brand"] == selected_brand]
selected_watch = st.selectbox("Select Watch Name (Optional)", ["Select"] + watches)
selected_sku = st.selectbox("Select SKU (Optional)", ["Select"] + skus)
# Get the selected watch data from the JSON
watch_data = None
if selected_watch != "Select":
watch_data = next((item for item in data if item["name"] == selected_watch), None)
elif selected_sku != "Select":
watch_data = next((item for item in data if item["sku"] == selected_sku), None)
if watch_data:
# Display the image from the JSON
image_url = watch_data.get("image", None)
if image_url:
st.image(image_url, caption=f"{watch_data['name']} Image")
# Get the Ethos product link for web scraping (assuming 'url' key exists in your JSON)
product_link = watch_data.get("url", None)
if product_link:
st.write(f"Fetching details from: [Product Page]({product_link})")
# Scrape Ethos product page for more description
ethos_description = scrape_ethos_description(product_link)
st.write("### Ethos Product Description")
st.write(ethos_description)
else:
st.warning("No Ethos link available for this SKU.")
# Generate watch description based on attributes and scraped content
attributes = {
"brand": watch_data["brand"],
"name": watch_data.get("name", "Unknown Watch"),
"sku": watch_data.get("sku", "Unknown SKU"),
"features": watch_data.get("features", "Unknown Features"),
"casesize": watch_data.get("casesize", "Unknown Case Size"),
"movement": watch_data.get("movement", "Unknown Movement"),
"gender": watch_data.get("gender", "Unknown Gender"),
"water_resistance": watch_data.get("water_resistance", "Unknown Water Resistance"),
"power_reserve": watch_data.get("power_reserve", "Unknown Power Reserve"),
"dial_color": watch_data.get("dial_color", "Unknown Dial Color"),
"strap_material": watch_data.get("strap_material", "Unknown Strap Material")
}
# Create a detailed description prompt combining scraped content and attributes
input_text = f"""Generate a detailed 100-word description for the following watch:
Brand: {attributes['brand']}
Name: {attributes['name']}
SKU: {attributes['sku']}
Features: {attributes['features']}
Case Size: {attributes['casesize']}
Movement: {attributes['movement']}
Gender: {attributes['gender']}
Water Resistance: {attributes['water_resistance']}
Power Reserve: {attributes['power_reserve']}
Dial Color: {attributes['dial_color']}
Strap Material: {attributes['strap_material']}
Additional details from Ethos:
{ethos_description}
Description: Provide a luxurious, detailed description focusing on the craftsmanship, innovation, and design, similar to a high-end editorial style."""
# Tokenize input and generate description
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(
**inputs,
max_length=150, # Limit output to 100-150 words
num_return_sequences=1,
temperature=0.7,
top_k=50,
top_p=0.95,
do_sample=True,
repetition_penalty=1.2 # Prevent repetition in descriptions
)
# Decode generated text
description = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Display the result
st.write("### Generated Description")
st.write(description)
else:
st.warning("Please select a brand.")
# Add some information about the app
st.sidebar.title("About")
st.sidebar.info(
"This app uses a fine-tuned AI model to generate descriptions for watches. "
"Select a brand and a watch to get started. The model will generate a unique "
"description based on the watch's attributes and additional details."
)
# Add a footer
st.markdown(
"""
<style>
.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: #f1f1f1;
color: black;
text-align: center;
}
</style>
<div class="footer">
<p>Developed with ❤️ by Shreyansh Jha</p>
</div>
""",
unsafe_allow_html=True
)
|