Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
import requests
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load the pretrained model and tokenizer
|
8 |
+
MODEL_NAME = "google/flan-t5-large"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
11 |
+
|
12 |
+
# Function to generate text description
|
13 |
+
def generate_description(input_text):
|
14 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
15 |
+
outputs = model.generate(inputs["input_ids"], max_length=200)
|
16 |
+
description = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
+
return description
|
18 |
+
|
19 |
+
# Function to scrape brand website
|
20 |
+
def scrape_brand_website(brand_name, sku):
|
21 |
+
search_url = f"https://www.google.com/search?q={brand_name}+{sku}"
|
22 |
+
headers = {
|
23 |
+
"User-Agent": "Mozilla/5.0"
|
24 |
+
}
|
25 |
+
response = requests.get(search_url, headers=headers)
|
26 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
27 |
+
|
28 |
+
# For demonstration, just fetch the first URL (modify as per your requirement)
|
29 |
+
link = soup.find('a')['href']
|
30 |
+
return link
|
31 |
+
|
32 |
+
# Streamlit App
|
33 |
+
st.title("Watch Description Generator & Brand Scout")
|
34 |
+
|
35 |
+
# Inputs for watch details
|
36 |
+
brand_name = st.text_input("Enter Brand Name")
|
37 |
+
watch_name = st.text_input("Enter Watch Name")
|
38 |
+
sku = st.text_input("Enter Watch SKU")
|
39 |
+
|
40 |
+
# Button to generate description
|
41 |
+
if st.button("Generate Description"):
|
42 |
+
if brand_name and watch_name and sku:
|
43 |
+
# Generate description using the model
|
44 |
+
input_text = f"Watch Name: {watch_name}, Brand: {brand_name}, SKU: {sku}"
|
45 |
+
generated_description = generate_description(input_text)
|
46 |
+
st.write("Generated Description:")
|
47 |
+
st.write(generated_description)
|
48 |
+
|
49 |
+
# Scrape brand website for relevant information
|
50 |
+
st.write("Fetching Brand Website...")
|
51 |
+
brand_link = scrape_brand_website(brand_name, sku)
|
52 |
+
st.write(f"Brand Website: {brand_link}")
|
53 |
+
else:
|
54 |
+
st.warning("Please fill in all fields.")
|