Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
|
|
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
@st.cache_resource
|
7 |
def load_model():
|
8 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
10 |
return model, tokenizer
|
11 |
|
12 |
model, tokenizer = load_model()
|
@@ -34,7 +35,6 @@ selected_brand = st.selectbox("Select a Brand", ["Select"] + brands)
|
|
34 |
if selected_brand != "Select":
|
35 |
watches = [item["name"] for item in data if item["brand"] == selected_brand]
|
36 |
skus = [item["sku"] for item in data if item["brand"] == selected_brand]
|
37 |
-
|
38 |
selected_watch = st.selectbox("Select Watch Name (Optional)", ["Select"] + watches)
|
39 |
selected_sku = st.selectbox("Select SKU (Optional)", ["Select"] + skus)
|
40 |
|
@@ -56,14 +56,12 @@ if selected_brand != "Select":
|
|
56 |
"casesize": watch_data.get("casesize", "Unknown Case Size"),
|
57 |
"movement": watch_data.get("movement", "Unknown Movement"),
|
58 |
"gender": watch_data.get("gender", "Unknown Gender"),
|
59 |
-
# Add more attributes as needed
|
60 |
}
|
61 |
-
|
62 |
input_text = f"Brand: {attributes['brand']}, Watch Name: {attributes['name']}, SKU: {attributes['sku']}, Features: {attributes['features']}, Case Size: {attributes['casesize']}, Movement: {attributes['movement']}, Gender: {attributes['gender']}"
|
63 |
|
64 |
# Tokenize input and generate description
|
65 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
66 |
-
outputs = model.generate(**inputs)
|
67 |
|
68 |
# Decode generated text
|
69 |
description = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -71,5 +69,38 @@ if selected_brand != "Select":
|
|
71 |
# Display the result
|
72 |
st.write("### Generated Description")
|
73 |
st.write(description)
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
st.warning("Please select a brand.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
import json
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
6 |
# Load model and tokenizer
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("shreyanshjha0709/watch-description-generator")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("shreyanshjha0709/watch-description-generator")
|
11 |
return model, tokenizer
|
12 |
|
13 |
model, tokenizer = load_model()
|
|
|
35 |
if selected_brand != "Select":
|
36 |
watches = [item["name"] for item in data if item["brand"] == selected_brand]
|
37 |
skus = [item["sku"] for item in data if item["brand"] == selected_brand]
|
|
|
38 |
selected_watch = st.selectbox("Select Watch Name (Optional)", ["Select"] + watches)
|
39 |
selected_sku = st.selectbox("Select SKU (Optional)", ["Select"] + skus)
|
40 |
|
|
|
56 |
"casesize": watch_data.get("casesize", "Unknown Case Size"),
|
57 |
"movement": watch_data.get("movement", "Unknown Movement"),
|
58 |
"gender": watch_data.get("gender", "Unknown Gender"),
|
|
|
59 |
}
|
|
|
60 |
input_text = f"Brand: {attributes['brand']}, Watch Name: {attributes['name']}, SKU: {attributes['sku']}, Features: {attributes['features']}, Case Size: {attributes['casesize']}, Movement: {attributes['movement']}, Gender: {attributes['gender']}"
|
61 |
|
62 |
# Tokenize input and generate description
|
63 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
64 |
+
outputs = model.generate(**inputs, max_length=150, num_return_sequences=1)
|
65 |
|
66 |
# Decode generated text
|
67 |
description = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
69 |
# Display the result
|
70 |
st.write("### Generated Description")
|
71 |
st.write(description)
|
72 |
+
|
73 |
+
# Display watch details
|
74 |
+
st.write("### Watch Details")
|
75 |
+
st.json(json.dumps(watch_data, indent=2))
|
76 |
else:
|
77 |
st.warning("Please select a brand.")
|
78 |
+
|
79 |
+
# Add some information about the app
|
80 |
+
st.sidebar.title("About")
|
81 |
+
st.sidebar.info(
|
82 |
+
"This app uses a fine-tuned AI model to generate descriptions for watches. "
|
83 |
+
"Select a brand and a watch to get started. The model will generate a unique "
|
84 |
+
"description based on the watch's attributes."
|
85 |
+
)
|
86 |
+
|
87 |
+
# Add a footer
|
88 |
+
st.markdown(
|
89 |
+
"""
|
90 |
+
<style>
|
91 |
+
.footer {
|
92 |
+
position: fixed;
|
93 |
+
left: 0;
|
94 |
+
bottom: 0;
|
95 |
+
width: 100%;
|
96 |
+
background-color: #f1f1f1;
|
97 |
+
color: black;
|
98 |
+
text-align: center;
|
99 |
+
}
|
100 |
+
</style>
|
101 |
+
<div class="footer">
|
102 |
+
<p>Developed with ❤️ by Your Name</p>
|
103 |
+
</div>
|
104 |
+
""",
|
105 |
+
unsafe_allow_html=True
|
106 |
+
)
|