Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
|
|
3 |
import json
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
@@ -25,6 +26,21 @@ data = load_json_from_url(json_url)
|
|
25 |
# Extract unique brands
|
26 |
brands = sorted(list(set([item["brand"] for item in data])))
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Streamlit UI
|
29 |
st.title("Watch Description Generator")
|
30 |
|
@@ -51,7 +67,19 @@ if selected_brand != "Select":
|
|
51 |
if image_url:
|
52 |
st.image(image_url, caption=f"{watch_data['name']} Image")
|
53 |
|
54 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
attributes = {
|
56 |
"brand": watch_data["brand"],
|
57 |
"name": watch_data.get("name", "Unknown Watch"),
|
@@ -66,7 +94,7 @@ if selected_brand != "Select":
|
|
66 |
"strap_material": watch_data.get("strap_material", "Unknown Strap Material")
|
67 |
}
|
68 |
|
69 |
-
# Create a detailed description prompt
|
70 |
input_text = f"""Generate a detailed 100-word description for the following watch:
|
71 |
Brand: {attributes['brand']}
|
72 |
Name: {attributes['name']}
|
@@ -80,6 +108,9 @@ Power Reserve: {attributes['power_reserve']}
|
|
80 |
Dial Color: {attributes['dial_color']}
|
81 |
Strap Material: {attributes['strap_material']}
|
82 |
|
|
|
|
|
|
|
83 |
Description: Provide a luxurious, detailed description focusing on the craftsmanship, innovation, and design, similar to a high-end editorial style."""
|
84 |
|
85 |
# Tokenize input and generate description
|
@@ -109,7 +140,7 @@ st.sidebar.title("About")
|
|
109 |
st.sidebar.info(
|
110 |
"This app uses a fine-tuned AI model to generate descriptions for watches. "
|
111 |
"Select a brand and a watch to get started. The model will generate a unique "
|
112 |
-
"description based on the watch's attributes."
|
113 |
)
|
114 |
|
115 |
# Add a footer
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
import json
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
|
|
|
26 |
# Extract unique brands
|
27 |
brands = sorted(list(set([item["brand"] for item in data])))
|
28 |
|
29 |
+
# Web Scraping function to get product description from Ethos website
|
30 |
+
def scrape_ethos_description(product_link):
|
31 |
+
try:
|
32 |
+
response = requests.get(product_link)
|
33 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
34 |
+
|
35 |
+
# Assuming product description is within a specific class or ID, find it
|
36 |
+
description = soup.find('div', class_='product-description') # Example class, adjust based on actual site structure
|
37 |
+
if description:
|
38 |
+
return description.get_text(strip=True)
|
39 |
+
else:
|
40 |
+
return "No detailed description available on Ethos site."
|
41 |
+
except Exception as e:
|
42 |
+
return f"Error fetching details from Ethos site: {str(e)}"
|
43 |
+
|
44 |
# Streamlit UI
|
45 |
st.title("Watch Description Generator")
|
46 |
|
|
|
67 |
if image_url:
|
68 |
st.image(image_url, caption=f"{watch_data['name']} Image")
|
69 |
|
70 |
+
# Get the Ethos product link for web scraping (assuming 'url' key exists in your JSON)
|
71 |
+
product_link = watch_data.get("url", None)
|
72 |
+
if product_link:
|
73 |
+
st.write(f"Fetching details from: [Product Page]({product_link})")
|
74 |
+
|
75 |
+
# Scrape Ethos product page for more description
|
76 |
+
ethos_description = scrape_ethos_description(product_link)
|
77 |
+
st.write("### Ethos Product Description")
|
78 |
+
st.write(ethos_description)
|
79 |
+
else:
|
80 |
+
st.warning("No Ethos link available for this SKU.")
|
81 |
+
|
82 |
+
# Generate watch description based on attributes and scraped content
|
83 |
attributes = {
|
84 |
"brand": watch_data["brand"],
|
85 |
"name": watch_data.get("name", "Unknown Watch"),
|
|
|
94 |
"strap_material": watch_data.get("strap_material", "Unknown Strap Material")
|
95 |
}
|
96 |
|
97 |
+
# Create a detailed description prompt combining scraped content and attributes
|
98 |
input_text = f"""Generate a detailed 100-word description for the following watch:
|
99 |
Brand: {attributes['brand']}
|
100 |
Name: {attributes['name']}
|
|
|
108 |
Dial Color: {attributes['dial_color']}
|
109 |
Strap Material: {attributes['strap_material']}
|
110 |
|
111 |
+
Additional details from Ethos:
|
112 |
+
{ethos_description}
|
113 |
+
|
114 |
Description: Provide a luxurious, detailed description focusing on the craftsmanship, innovation, and design, similar to a high-end editorial style."""
|
115 |
|
116 |
# Tokenize input and generate description
|
|
|
140 |
st.sidebar.info(
|
141 |
"This app uses a fine-tuned AI model to generate descriptions for watches. "
|
142 |
"Select a brand and a watch to get started. The model will generate a unique "
|
143 |
+
"description based on the watch's attributes and additional details."
|
144 |
)
|
145 |
|
146 |
# Add a footer
|