File size: 8,828 Bytes
01ba43f
 
 
 
 
 
17e2f81
3f22c56
 
 
01ba43f
 
3f22c56
01ba43f
 
 
 
19067cd
 
3f2b2d5
 
 
 
 
19067cd
 
aeaeda9
19067cd
aeaeda9
 
 
 
 
 
da2e9d7
 
 
 
 
 
3f2b2d5
1e01463
19067cd
aeaeda9
01ba43f
 
3f22c56
01ba43f
3f22c56
 
 
471e89f
3f22c56
 
 
d083d25
 
3f22c56
dc929f0
d083d25
 
dc929f0
d083d25
dc929f0
d083d25
 
dc929f0
d083d25
471e89f
dc929f0
 
01ba43f
 
 
 
 
4d0bb56
01ba43f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
849dd99
01ba43f
 
 
 
 
 
 
849dd99
027ee2f
01ba43f
9f4507b
01ba43f
 
 
 
 
 
63a76b3
01ba43f
 
 
9cdfe23
01ba43f
 
 
 
2f70e48
 
 
71cd062
 
 
01ba43f
 
 
 
 
 
3f22c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
from PIL import Image
from transformers import BitsAndBytesConfig, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import spaces
import torch
import os

from transformers import AutoProcessor, AutoModelForCausalLM 



access_token = os.getenv('HF_token')
model_id = "selamw/BirdWatcher2"
bnb_config = BitsAndBytesConfig(load_in_8bit=True)


def convert_to_markdown(input_text):
    """Converts bird information text to Markdown format, 
       making specific keywords bold and adding headings.
    Args:
        input_text (str): The input text containing bird information.
    Returns:
        str: The formatted Markdown text.
    """
    
    bold_words = ['Look:', 'Cool Fact!:', 'Habitat:', 'Food:', 'Birdie Behaviors:']

    # Split into title and content based on the first ":", handling extra whitespace
    if ":" in input_text:
        title, content = map(str.strip, input_text.split(":", 1))
    else:
        title = input_text
        content = ""

    # Bold the keywords 
    for word in bold_words:
        content = content.replace(word, f'\n\n**{word}')
    
    # Construct the Markdown output with headings
    formatted_output = f"**{title}**{content}" 

    return formatted_output.strip()

    
@spaces.GPU
def infer_fin_pali(image, question):
    # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token)
    # processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token)


    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, trust_remote_code=True, quantization_config=bnb_config,token=access_token).to(device)
    processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, token=access_token)
###

    # model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
    # processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
    
    # prompt = "<OD>"
    
    # url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
    # image = Image.open(requests.get(url, stream=True).raw)
    
    inputs = processor(text=question, images=image, return_tensors="pt").to(device, torch_dtype)
    
######
    # inputs = processor(images=image, text=question, return_tensors="pt").to(device)

    predictions = model.generate(**inputs, max_new_tokens=512)
    decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")

    # Ensure proper Markdown formatting
    formatted_output = convert_to_markdown(decoded_output)

    return formatted_output


css = """
    #mkd {
        height: 500px; 
        overflow: auto; 
        border: 1px solid #ccc; 
    }
    h1 {
        text-align: center;
    }
    h3 {
        text-align: center;
    }
    h2 {
        text-align: center;
    }
    span.gray-text {
        color: gray;
    }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1>🦩  BirdWatcher  🦜</h1>")
    gr.HTML("<h3>[Powered by Fine-tuned PaliGemma]</h3>")
    gr.HTML("<h3>Upload an image of a bird, and the model will generate a detailed description of its species.</h3>")
    gr.HTML("<p style='text-align: center;'>(There are over 11,000 bird species in the world, and this model was fine-tuned with over 500)</p>")
    
    with gr.Tab(label="Bird Identification"):
        with gr.Row():
            input_img = gr.Image(label="Input Bird Image") 
            with gr.Column():
                with gr.Row():
                    question = gr.Text(label="Default Prompt", value="Describe this bird species", elem_id="default-prompt", interactive=True)
                with gr.Row():
                    submit_btn = gr.Button(value="Run")
                with gr.Row():
                    output = gr.Markdown(label="Response")  # Use Markdown component to display output
        
        submit_btn.click(infer_fin_pali, [input_img, question], [output])
        
        gr.Examples(
            [["01.jpg", "Describe this bird species"],
             ["02.jpg", "Describe this bird species"],
             ["03.jpg", "Describe this bird species"],
             ["04.jpg", "Describe this bird species"],
             ["05.jpg", "Describe this bird species"],
             ["06.jpg", "Describe this bird species"]],
            inputs=[input_img, question],
            outputs=[output],
            fn=infer_fin_pali,
            label='Examples πŸ‘‡'
        )

demo.launch(debug=True, share=True)

# import gradio as gr
# from PIL import Image
# from transformers import BitsAndBytesConfig, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
# import spaces
# import torch
# import os


# access_token = os.getenv('HF_token')
# model_id = "selamw/BirdWatcher"
# bnb_config = BitsAndBytesConfig(load_in_8bit=True)


# def convert_to_markdown(input_text):
#     """Converts bird information text to Markdown format, 
#        making specific keywords bold and adding headings.
#     Args:
#         input_text (str): The input text containing bird information.
#     Returns:
#         str: The formatted Markdown text.
#     """
    
#     bold_words = ['Look:', 'Cool Fact!:', 'Habitat:', 'Food:', 'Birdie Behaviors:']

#     # Split into title and content based on the first ":", handling extra whitespace
#     if ":" in input_text:
#         title, content = map(str.strip, input_text.split(":", 1))
#     else:
#         title = input_text
#         content = ""

#     # Bold the keywords 
#     for word in bold_words:
#         content = content.replace(word, f'\n\n**{word}')
    
#     # Construct the Markdown output with headings
#     formatted_output = f"**{title}**{content}" 

#     return formatted_output.strip()

    
# @spaces.GPU
# def infer_fin_pali(image, question):
#     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
#     model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token)
#     processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token)

    
#     inputs = processor(images=image, text=question, return_tensors="pt").to(device)

#     predictions = model.generate(**inputs, max_new_tokens=512)
#     decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")

#     # Ensure proper Markdown formatting
#     formatted_output = convert_to_markdown(decoded_output)

#     return formatted_output


# css = """
#     #mkd {
#         height: 500px; 
#         overflow: auto; 
#         border: 1px solid #ccc; 
#     }
#     h1 {
#         text-align: center;
#     }
#     h3 {
#         text-align: center;
#     }
#     h2 {
#         text-align: center;
#     }
#     span.gray-text {
#         color: gray;
#     }
# """

# with gr.Blocks(css=css) as demo:
#     gr.HTML("<h1>🦩  BirdWatcher  🦜</h1>")
#     gr.HTML("<h3>[Powered by Fine-tuned PaliGemma]</h3>")
#     gr.HTML("<h3>Upload an image of a bird, and the model will generate a detailed description of its species.</h3>")
#     gr.HTML("<p style='text-align: center;'>(There are over 11,000 bird species in the world, and this model was fine-tuned with over 500)</p>")
    
#     with gr.Tab(label="Bird Identification"):
#         with gr.Row():
#             input_img = gr.Image(label="Input Bird Image") 
#             with gr.Column():
#                 with gr.Row():
#                     question = gr.Text(label="Default Prompt", value="Describe this bird species", elem_id="default-prompt", interactive=True)
#                 with gr.Row():
#                     submit_btn = gr.Button(value="Run")
#                 with gr.Row():
#                     output = gr.Markdown(label="Response")  # Use Markdown component to display output
        
#         submit_btn.click(infer_fin_pali, [input_img, question], [output])
        
#         gr.Examples(
#             [["01.jpg", "Describe this bird species"],
#              ["02.jpg", "Describe this bird species"],
#              ["03.jpg", "Describe this bird species"],
#              ["04.jpg", "Describe this bird species"],
#              ["05.jpg", "Describe this bird species"],
#              ["06.jpg", "Describe this bird species"]],
#             inputs=[input_img, question],
#             outputs=[output],
#             fn=infer_fin_pali,
#             label='Examples πŸ‘‡'
#         )

# demo.launch(debug=True, share=True)