Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ import spaces
|
|
5 |
import torch
|
6 |
import os
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
access_token = os.getenv('HF_token')
|
10 |
model_id = "selamw/BirdWatcher2"
|
@@ -41,11 +44,19 @@ def convert_to_markdown(input_text):
|
|
41 |
|
42 |
@spaces.GPU
|
43 |
def infer_fin_pali(image, question):
|
44 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
|
46 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token)
|
47 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token)
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
|
50 |
|
51 |
predictions = model.generate(**inputs, max_new_tokens=512)
|
|
|
5 |
import torch
|
6 |
import os
|
7 |
|
8 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
9 |
+
|
10 |
+
|
11 |
|
12 |
access_token = os.getenv('HF_token')
|
13 |
model_id = "selamw/BirdWatcher2"
|
|
|
44 |
|
45 |
@spaces.GPU
|
46 |
def infer_fin_pali(image, question):
|
47 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
|
49 |
+
# model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token)
|
50 |
+
# processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token)
|
51 |
+
|
52 |
|
53 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
54 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
55 |
+
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, trust_remote_code=True, token=access_token).to(device)
|
57 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, token=access_token)
|
58 |
+
###
|
59 |
+
|
60 |
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
|
61 |
|
62 |
predictions = model.generate(**inputs, max_new_tokens=512)
|