selamw commited on
Commit
dc929f0
·
verified ·
1 Parent(s): 2f9ca75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -3
app.py CHANGED
@@ -53,11 +53,22 @@ def infer_fin_pali(image, question):
53
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
54
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
55
 
56
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, trust_remote_code=True, quantization_config=bnb_config,token=access_token).to(device)
57
- processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, token=access_token)
58
  ###
 
 
 
 
 
 
 
 
 
 
59
 
60
- inputs = processor(images=image, text=question, return_tensors="pt").to(device)
 
61
 
62
  predictions = model.generate(**inputs, max_new_tokens=512)
63
  decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
 
53
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
54
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
55
 
56
+ # model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, trust_remote_code=True, quantization_config=bnb_config,token=access_token).to(device)
57
+ # processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, token=access_token)
58
  ###
59
+
60
+ model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
61
+ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
62
+
63
+ prompt = "<OD>"
64
+
65
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
66
+ image = Image.open(requests.get(url, stream=True).raw)
67
+
68
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
69
 
70
+ ######
71
+ # inputs = processor(images=image, text=question, return_tensors="pt").to(device)
72
 
73
  predictions = model.generate(**inputs, max_new_tokens=512)
74
  decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")