selamw commited on
Commit
01ba43f
·
verified ·
1 Parent(s): 7e4452b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -0
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ from transformers import BitsAndBytesConfig, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
4
+ import spaces
5
+ import torch
6
+ import os
7
+
8
+ access_token = os.getenv('HF_token')
9
+
10
+ model_id = "selamw/BirdWatcher-AI"
11
+
12
+ bnb_config = BitsAndBytesConfig(load_in_8bit=True)
13
+
14
+
15
+ def convert_to_markdown(input_text):
16
+ # Split the input text into sections based on the '**' delimiter
17
+ sections = input_text.split("**")
18
+
19
+ # Initialize the formatted output with the bird name
20
+ formatted_output = f"**{sections[0].strip()}**\n"
21
+
22
+ # Process each section to format it
23
+ for i in range(1, len(sections), 2):
24
+ if i + 1 < len(sections):
25
+ # Use '##' for subheadings and clean up the text
26
+ header = sections[i].strip() + "** "
27
+ content = sections[i + 1].strip()
28
+ formatted_output += f"\n**{header}{content}\n"
29
+
30
+ # Return the formatted output
31
+ return formatted_output.strip()
32
+
33
+
34
+ @spaces.GPU
35
+ def infer_fin_pali(image, question):
36
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
37
+
38
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token)
39
+ processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token)
40
+
41
+ inputs = processor(images=image, text=question, return_tensors="pt").to(device)
42
+
43
+ predictions = model.generate(**inputs, max_new_tokens=512)
44
+ decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
45
+
46
+ # Ensure proper Markdown formatting
47
+ formatted_output = convert_to_markdown(decoded_output)
48
+
49
+ return formatted_output
50
+
51
+
52
+ css = """
53
+ #mkd {
54
+ height: 500px;
55
+ overflow: auto;
56
+ border: 1px solid #ccc;
57
+ }
58
+ h1 {
59
+ text-align: center;
60
+ }
61
+ h3 {
62
+ text-align: center;
63
+ }
64
+ h2 {
65
+ text-align: left;
66
+ }
67
+ span.gray-text {
68
+ color: gray;
69
+ }
70
+ """
71
+
72
+ with gr.Blocks(css=css) as demo:
73
+ gr.HTML("<h1>🦩 Bird Identifier: Powered by Fine-tuned PaliGemma 🦜</h1>")
74
+ gr.HTML("<h3>Upload an image of a bird, and the model will generate a detailed description of its species.</h3>")
75
+
76
+ with gr.Tab(label="Bird Identification"):
77
+ with gr.Row():
78
+ input_img = gr.Image(label="Input Bird Image")
79
+ with gr.Column():
80
+ with gr.Row():
81
+ question = gr.Text(label="Default Prompt", value="Describe this bird", elem_id="default-prompt")
82
+ with gr.Row():
83
+ submit_btn = gr.Button(value="Run")
84
+ with gr.Row():
85
+ output = gr.Markdown(label="Response") # Use Markdown component to display output
86
+ # output = gr.Text(label="Response") # Use Markdown component to display output
87
+
88
+ submit_btn.click(infer_fin_pali, [input_img, question], [output])
89
+
90
+ gr.Examples(
91
+ [["020.jpg", "Describe this bird"],
92
+ ["5.jpg", "Describe this bird"],
93
+ ["1.jpg", "Describe this bird"]],
94
+ inputs=[input_img, question],
95
+ outputs=[output],
96
+ fn=infer_fin_pali,
97
+ label='Examples 👇'
98
+ )
99
+
100
+ demo.launch(debug=True)