File size: 4,537 Bytes
53a5038
41b8230
 
 
 
 
5cf3079
41b8230
 
 
7bc17d6
33a3ad3
 
41b8230
 
 
05bf013
41b8230
 
 
125b60f
3d03f6e
 
 
41b8230
 
 
 
33a3ad3
41b8230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c1570
 
41b8230
 
 
 
 
 
 
 
 
 
 
 
53a5038
 
ba9e337
824b61b
 
 
 
 
 
ba9e337
33a3ad3
 
 
 
 
 
 
 
97d3ce4
33a3ad3
 
 
ba9e337
 
 
 
 
 
 
 
 
33a3ad3
ba9e337
 
33a3ad3
ba9e337
 
41b8230
a75a01d
fe10fad
 
 
 
 
 
 
 
 
 
 
 
33a3ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe10fad
33a3ad3
 
 
 
41b8230
33a3ad3
 
97d3ce4
33a3ad3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import transformers
import spaces
import requests
from urllib.parse import urlencode

# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)

loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()

# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"

model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    config=model_config,
    device_map=device,
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

query_pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    return_full_text=True,
    torch_dtype=torch.float16,
    device_map=device,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    top_k=50,
    max_new_tokens=256
)

llm = HuggingFacePipeline(pipeline=query_pipeline)

books_db_client_retriever = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=books_db_client,
    verbose=True
)

# OAuth Configuration
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"

params = {
    'client_id': CLIENT_ID,
    'response_type': 'code',
    'redirect_uri': REDIRECT_URI,
    'response_mode': 'query',
    'scope': 'User.Read',
    'state': '12345'  # Optional state parameter
}

# Redirect the user to Microsoft's OAuth endpoint
login_url = f"{AUTH_URL}?{urlencode(params)}"
print("Redirect to:", login_url)

def exchange_code_for_token(auth_code):
    data = {
        'grant_type': 'authorization_code',
        'client_id': CLIENT_ID,
        'client_secret': CLIENT_SECRET,
        'code': auth_code,
        'redirect_uri': REDIRECT_URI
    }
    
    response = requests.post(TOKEN_URL, data=data)
    token_data = response.json()
    
    return token_data.get('access_token')

# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
    books_retriever = books_db_client_retriever.run(query)
    
    # Extract the relevant answer using regex
    corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
    
    if corrected_text_match:
        corrected_text_books = corrected_text_match.group(1).strip()
    else:
        corrected_text_books = "No helpful answer found."
    
    return corrected_text_books

# Define the Gradio interface
def chat(query, history=None):
    if history is None:
        history = []
    if query:
        answer = test_rag(query)
        history.append((query, answer))
    return history, ""  # Clear input after submission

# Function to clear input text
def clear_input():
    return "",  # Return empty string to clear input field

# Gradio interface
with gr.Blocks() as interface:
    gr.Markdown("## RAG Chatbot")
    gr.Markdown("Ask a question and get answers based on retrieved documents.")
    
    input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
    submit_btn = gr.Button("Submit")
    # clear_btn = gr.Button("Clear")
    chat_history = gr.Chatbot(label="Chat History")
    
    submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
    # clear_btn.click(clear_input, outputs=input_box)

interface.launch()