sagar007's picture
Update app.py
3d63694 verified
raw
history blame
38.3 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
from typing import List, Dict, Tuple, Any
from functools import lru_cache
import asyncio
import threading
from concurrent.futures import ThreadPoolExecutor
import warnings
# Suppress specific warnings if needed (optional)
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
# --- Configuration ---
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
MAX_SEARCH_RESULTS = 5
TTS_SAMPLE_RATE = 24000
MAX_TTS_CHARS = 1000 # Reduced for faster testing, adjust as needed
GPU_DURATION = 60 # Increased duration for longer tasks like TTS
MAX_NEW_TOKENS = 256
TEMPERATURE = 0.7
TOP_P = 0.95
# --- Initialization ---
# Initialize model and tokenizer with better error handling
try:
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
print("Loading model...")
# Determine device map based on CUDA availability
device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map=device_map,
# offload_folder="offload", # Only use offload if really needed and configured
low_cpu_mem_usage=True,
torch_dtype=torch_dtype
)
print(f"Model loaded on device map: {model.hf_device_map}")
print("Model and tokenizer loaded successfully")
except Exception as e:
print(f"Error initializing model: {str(e)}")
# If running in Spaces, maybe try loading to CPU as fallback?
# For now, just raise the error.
raise
# --- TTS Setup ---
VOICE_CHOICES = {
'πŸ‡ΊπŸ‡Έ Female (Default)': 'af',
'πŸ‡ΊπŸ‡Έ Bella': 'af_bella',
'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah',
'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole'
}
TTS_ENABLED = False
TTS_MODEL = None
VOICEPACKS = {} # Cache voice packs
KOKORO_PATH = 'Kokoro-82M'
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
def setup_tts():
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
try:
# Check if Kokoro already exists
if not os.path.exists(KOKORO_PATH):
print("Cloning Kokoro-82M repository...")
# Install git-lfs if not present (might need sudo/apt)
try:
subprocess.run(['git', 'lfs', 'install'], check=True, capture_output=True)
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err:
print(f"Warning: git-lfs might not be installed or failed: {lfs_err}. Cloning might be slow or incomplete.")
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M']
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
print("Kokoro cloned successfully.")
print(result.stdout)
# Optionally pull LFS files if needed (sometimes clone doesn't get them all)
# subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True)
else:
print("Kokoro-82M directory already exists.")
# Install espeak (essential for phonemization)
print("Attempting to install espeak-ng or espeak...")
try:
# Try installing espeak-ng first (often preferred)
subprocess.run(['sudo', 'apt-get', 'update'], check=True, capture_output=True)
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak-ng'], check=True, capture_output=True)
print("espeak-ng installed successfully.")
except (FileNotFoundError, subprocess.CalledProcessError):
print("espeak-ng installation failed, trying espeak...")
try:
# Fallback to espeak
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak'], check=True, capture_output=True)
print("espeak installed successfully.")
except (FileNotFoundError, subprocess.CalledProcessError) as espeak_err:
print(f"Warning: Could not install espeak-ng or espeak: {espeak_err}. TTS functionality will be disabled.")
return # Cannot proceed without espeak
# Set up Kokoro TTS
if os.path.exists(KOKORO_PATH):
import sys
if KOKORO_PATH not in sys.path:
sys.path.append(KOKORO_PATH)
try:
from models import build_model
from kokoro import generate as generate_tts_internal # Avoid name clash
# Make these functions accessible globally if needed, but better to keep scoped
globals()['build_model'] = build_model
globals()['generate_tts_internal'] = generate_tts_internal
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading TTS model onto device: {device}")
# Ensure model path is correct
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
if not os.path.exists(model_file):
print(f"Error: TTS model file not found at {model_file}")
# Attempt to pull LFS files again
try:
print("Attempting git lfs pull...")
subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True, capture_output=True)
if not os.path.exists(model_file):
print(f"Error: TTS model file STILL not found at {model_file} after lfs pull.")
return
except Exception as lfs_pull_err:
print(f"Error during git lfs pull: {lfs_pull_err}")
return
TTS_MODEL = build_model(model_file, device)
# Preload default voice
default_voice_id = 'af'
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{default_voice_id}.pt')
if os.path.exists(voice_file_path):
print(f"Loading default voice: {default_voice_id}")
VOICEPACKS[default_voice_id] = torch.load(voice_file_path,
map_location=device) # Removed weights_only=True
else:
print(f"Warning: Default voice file {voice_file_path} not found.")
# Preload other common voices to reduce latency
for voice_name, voice_id in VOICE_CHOICES.items():
if voice_id != default_voice_id: # Avoid reloading default
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
if os.path.exists(voice_file_path):
try:
print(f"Preloading voice: {voice_id}")
VOICEPACKS[voice_id] = torch.load(voice_file_path,
map_location=device) # Removed weights_only=True
except Exception as e:
print(f"Warning: Could not preload voice {voice_id}: {str(e)}")
else:
print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, will skip preloading.")
TTS_ENABLED = True
print("TTS setup completed successfully")
except ImportError as ie:
print(f"Error importing Kokoro modules: {ie}. Check if Kokoro-82M is correctly cloned and in sys.path.")
except Exception as model_load_err:
print(f"Error loading TTS model or voices: {model_load_err}")
else:
print(f"Warning: {KOKORO_PATH} directory not found after clone attempt. TTS disabled.")
except subprocess.CalledProcessError as spe:
print(f"Warning: A subprocess command failed during TTS setup: {spe}")
print(f"Command: {' '.join(spe.cmd)}")
print(f"Stderr: {spe.stderr}")
print("TTS may be disabled.")
except Exception as e:
print(f"Warning: An unexpected error occurred during TTS setup: {str(e)}")
TTS_ENABLED = False
# Start TTS setup in a separate thread
print("Starting TTS setup in background thread...")
tts_thread = threading.Thread(target=setup_tts, daemon=True)
tts_thread.start()
# --- Search and Generation Functions ---
@lru_cache(maxsize=128)
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
"""Get web search results using DuckDuckGo with caching for improved performance"""
print(f"Performing web search for: '{query}'")
try:
with DDGS() as ddgs:
# Using safe='off' potentially gives more results but use cautiously
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate'))
print(f"Found {len(results)} results.")
formatted_results = []
for result in results:
formatted_results.append({
"title": result.get("title", "No Title"),
"snippet": result.get("body", "No Snippet Available"),
"url": result.get("href", "#"),
# Attempt to extract date - DDGS doesn't reliably provide it
# "date": result.get("published", "") # Placeholder
})
return formatted_results
except Exception as e:
print(f"Error in web search: {e}")
return []
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
"""Format the prompt with web context"""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for i, res in enumerate(context)]) # No need for index here
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
Do not add information not present in the context.
Cite the sources used in your answer using bracket notation, e.g., [Source Title]. Use the titles from the context.
If the context does not contain relevant information to answer the query, state that clearly.
Current Time: {current_time}
Web Context:
{context_lines if context else "No web context available."}
User Query: {query}
Answer:"""
# print(f"Formatted Prompt:\n{prompt}") # Debugging
return prompt
def format_sources(web_results: List[Dict[str, str]]) -> str:
"""Format sources with more details"""
if not web_results:
return "<div class='no-sources'>No sources found for the query.</div>"
sources_html = "<div class='sources-container'>"
for i, res in enumerate(web_results, 1):
title = res.get("title", "Source")
url = res.get("url", "#")
# date = f"<span class='source-date'>{res['date']}</span>" if res.get('date') else "" # DDG date is unreliable
snippet = res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")
sources_html += f"""
<div class='source-item'>
<div class='source-number'>[{i}]</div>
<div class='source-content'>
<a href="{url}" target="_blank" class='source-title' title="{url}">{title}</a>
<div class='source-snippet'>{snippet}</div>
</div>
</div>
"""
sources_html += "</div>"
return sources_html
# Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks
# Keep GPU tasks separate if possible, or ensure thread safety if sharing GPU resources
executor = ThreadPoolExecutor(max_workers=4)
@spaces.GPU(duration=GPU_DURATION, cancellable=True)
async def generate_answer(prompt: str) -> str:
"""Generate answer using the DeepSeek model with optimized settings (Async Wrapper)"""
print("Generating answer...")
try:
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024, # Increased context length
return_attention_mask=True
).to(model.device)
# Ensure generation runs on the correct device
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available() and torch_dtype == torch.float16):
outputs = await asyncio.to_thread( # Use asyncio.to_thread for potentially blocking calls
model.generate,
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
top_p=TOP_P,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
early_stopping=True,
num_return_sequences=1
)
# Decode output
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part after "Answer:"
answer_part = full_output.split("Answer:")[-1].strip()
print(f"Generated Answer Raw Length: {len(outputs[0])}, Decoded Answer Part Length: {len(answer_part)}")
if not answer_part: # Handle cases where split might fail or answer is empty
print("Warning: Could not extract answer after 'Answer:'. Returning full output.")
return full_output # Fallback
return answer_part
except Exception as e:
print(f"Error during answer generation: {e}")
# You might want to return a specific error message here
return f"Error generating answer: {str(e)}"
# Ensure this function runs potentially long tasks in a thread using the executor
# @spaces.GPU(duration=GPU_DURATION, cancellable=True) # Keep GPU decorator if TTS uses GPU heavily
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
print(f"Attempting to generate speech for text (length {len(text)}) with voice '{voice_id}'")
if not TTS_ENABLED or TTS_MODEL is None:
print("TTS is not enabled or model not loaded.")
return None
if 'generate_tts_internal' not in globals():
print("TTS generation function 'generate_tts_internal' not found.")
return None
try:
device = TTS_MODEL.device # Get device from the loaded TTS model
# Load voicepack if needed (handle potential errors)
if voice_id not in VOICEPACKS:
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
if os.path.exists(voice_file_path):
print(f"Loading voice '{voice_id}' on demand...")
try:
VOICEPACKS[voice_id] = await asyncio.to_thread(
torch.load, voice_file_path, map_location=device # Removed weights_only=True
)
except Exception as load_err:
print(f"Error loading voicepack {voice_id}: {load_err}. Falling back to default 'af'.")
voice_id = 'af' # Fallback to default
# Ensure default is loaded if fallback occurs
if 'af' not in VOICEPACKS:
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
if os.path.exists(default_voice_file):
VOICEPACKS['af'] = await asyncio.to_thread(
torch.load, default_voice_file, map_location=device
)
else:
print("Default voice 'af' also not found. Cannot generate audio.")
return None
else:
print(f"Voicepack {voice_id}.pt not found. Falling back to default 'af'.")
voice_id = 'af' # Fallback to default
if 'af' not in VOICEPACKS: # Check again if default is needed now
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
if os.path.exists(default_voice_file):
VOICEPACKS['af'] = await asyncio.to_thread(
torch.load, default_voice_file, map_location=device
)
else:
print("Default voice 'af' also not found. Cannot generate audio.")
return None
if voice_id not in VOICEPACKS:
print(f"Error: Voice '{voice_id}' could not be loaded.")
return None
# Clean the text (simple cleaning)
clean_text = ' '.join(text.split()) # Remove extra whitespace
clean_text = clean_text.replace('*', '').replace('[', '').replace(']', '') # Remove markdown chars
# Ensure text isn't empty
if not clean_text.strip():
print("Warning: Empty text provided for TTS.")
return None
# Limit text length
if len(clean_text) > MAX_TTS_CHARS:
print(f"Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.")
# Simple truncation, could be smarter (split by sentence)
clean_text = clean_text[:MAX_TTS_CHARS]
last_space = clean_text.rfind(' ')
if last_space != -1:
clean_text = clean_text[:last_space] + "..." # Truncate at last space
# Run the potentially blocking TTS generation in a thread
print(f"Generating audio for: '{clean_text[:100]}...'")
gen_func = globals()['generate_tts_internal']
loop = asyncio.get_event_loop()
audio_data, _ = await loop.run_in_executor(
executor, # Use the thread pool executor
gen_func,
TTS_MODEL,
clean_text,
VOICEPACKS[voice_id],
'a' # Language code (assuming 'a' is appropriate)
)
if isinstance(audio_data, torch.Tensor):
# Move tensor to CPU before converting to numpy if it's not already
audio_np = audio_data.cpu().numpy()
elif isinstance(audio_data, np.ndarray):
audio_np = audio_data
else:
print("Warning: Unexpected audio data type from TTS.")
return None
print(f"Audio generated successfully, shape: {audio_np.shape}")
return (TTS_SAMPLE_RATE, audio_np)
except Exception as e:
import traceback
print(f"Error generating speech: {str(e)}")
print(traceback.format_exc()) # Print full traceback for debugging
return None
# Helper to get voice ID from display name
def get_voice_id(voice_display_name: str) -> str:
"""Maps the user-friendly voice name to the internal voice ID."""
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found
# --- Main Processing Logic (Async) ---
async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str):
"""Asynchronously process user query: search -> generate answer -> generate speech"""
if not query:
yield (
"Please enter a query.", "", "Search", history, None
)
return
if history is None: history = []
current_history = history + [[query, "*Searching...*"]]
# 1. Initial state: Searching
yield (
"*Searching & Thinking...*",
"<div class='searching'>Searching the web...</div>",
gr.Button(value="Searching...", interactive=False), # Disable button
current_history,
None
)
# 2. Perform Web Search (non-blocking)
loop = asyncio.get_event_loop()
web_results = await loop.run_in_executor(executor, get_web_results, query)
sources_html = format_sources(web_results)
# Update state: Analyzing results
current_history[-1][1] = "*Analyzing search results...*"
yield (
"*Analyzing search results...*",
sources_html,
gr.Button(value="Generating...", interactive=False),
current_history,
None
)
# 3. Generate Answer (non-blocking, potentially on GPU)
prompt = format_prompt(query, web_results)
final_answer = await generate_answer(prompt) # Already async
# Update state: Answer generated
current_history[-1][1] = final_answer
yield (
final_answer,
sources_html,
gr.Button(value="Audio...", interactive=False),
current_history,
None
)
# 4. Generate Speech (non-blocking, potentially on GPU)
audio = None
tts_message = ""
if not tts_thread.is_alive() and not TTS_ENABLED:
tts_message = "\n\n*(TTS setup failed or is disabled)*"
elif tts_thread.is_alive():
tts_message = "\n\n*(TTS is still initializing, audio may be delayed)*"
elif TTS_ENABLED:
voice_id = get_voice_id(selected_voice_display_name)
audio = await generate_speech(final_answer, voice_id) # Already async
if audio is None:
tts_message = f"\n\n*(Audio generation failed for voice '{voice_id}')*"
# 5. Final state: Show everything
yield (
final_answer + tts_message,
sources_html,
gr.Button(value="Search", interactive=True), # Re-enable button
current_history,
audio
)
# --- Gradio Interface ---
css = """
/* ... [Your existing CSS remains unchanged] ... */
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
#header h3 { color: #a8a9ab; }
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
.search-box { padding: 0; margin-bottom: 1rem; }
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; } /* Style textbox specifically */
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px;} /* Style dropdown */
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; } /* Style button */
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 42px !important; }
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; }
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 44px !important; }
.search-box button:hover { background: #1d4ed8 !important; }
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); }
.answer-box p { color: #374151; line-height: 1.7; }
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
.sources-container { margin-top: 0; }
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
.source-item:last-child { border-bottom: none; }
/* .source-item:hover { background-color: #f9fafb; } */
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
.source-content { flex: 1; }
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; }
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
.chat-history { max-height: 400px; overflow-y: auto; padding: 1rem; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
.chat-history::-webkit-scrollbar { width: 6px; }
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
.examples-container .gradio-examples { gap: 8px !important; } /* Target examples component */
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 0 !important; font-size: 0.9em !important; padding: 6px 12px !important; }
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
.markdown-content h3 { font-size: 1.2em !important; }
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
.accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */
.voice-selector { margin: 0; padding: 0; }
.voice-selector div[data-testid="dropdown"] { /* Target the specific dropdown container */ height: 44px !important; }
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; }
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
.audio-player audio { width: 100% !important; }
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Add span for animation */
.dark .gradio-container { background-color: #111827 !important; }
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
.dark #header h3 { color: #9ca3af; }
.dark .search-container { background: #1f2937; border-color: #374151; }
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.dark .search-box button { background: #3b82f6 !important; }
.dark .search-box button:hover { background: #2563eb !important; }
.dark .search-box button:disabled { background: #4b5563 !important; }
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
.dark .answer-box p { color: #d1d5db; }
.dark .answer-box code { background: #374151; color: #9ca3af; }
.dark .sources-box { background: #1f2937; border-color: #374151; }
.dark .sources-box h3 { color: #f9fafb; }
.dark .source-item { border-bottom-color: #374151; }
.dark .source-item:hover { background-color: #374151; }
.dark .source-number { color: #9ca3af; }
.dark .source-title { color: #60a5fa; }
.dark .source-title:hover { color: #93c5fd; }
.dark .source-snippet { color: #d1d5db; }
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; }
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
.dark .examples-container { background: #374151; border-color: #4b5563; }
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
.dark .markdown-content { color: #d1d5db !important; }
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
.dark .markdown-content a { color: #60a5fa !important; }
.dark .markdown-content a:hover { color: #93c5fd !important; }
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
.dark .markdown-content pre code { background: transparent !important; }
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
.dark .markdown-content th { background: #374151 !important; }
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
"""
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
chat_history = gr.State([])
with gr.Column(): # Main container
with gr.Column(elem_id="header"):
gr.Markdown("# πŸ” AI Search Assistant")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box", equal_height=True):
search_input = gr.Textbox(
label="",
placeholder="Ask anything...",
scale=5,
container=False, # Important for direct styling
elem_classes="gradio-textbox"
)
voice_select = gr.Dropdown(
choices=list(VOICE_CHOICES.keys()),
value=list(VOICE_CHOICES.keys())[0],
label="", # No label needed here
scale=2,
container=False, # Important
elem_classes="voice-selector gradio-dropdown"
)
search_btn = gr.Button(
"Search",
variant="primary",
scale=1,
elem_classes="gradio-button"
)
with gr.Row(elem_classes="results-container", equal_height=False):
with gr.Column(scale=3): # Wider column for answer + history
with gr.Column(elem_classes="answer-box"):
answer_output = gr.Markdown(elem_classes="markdown-content", value="*Your answer will appear here...*")
# Audio player below the answer
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player", type="numpy") # Expect numpy array
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
chat_history_display = gr.Chatbot(elem_classes="chat-history", label="History", height=300)
with gr.Column(scale=2): # Narrower column for sources
with gr.Column(elem_classes="sources-box"):
gr.Markdown("### Sources")
sources_output = gr.HTML(value="<div class='no-sources'>Sources will appear here after searching.</div>")
with gr.Row(elem_classes="examples-container"):
gr.Examples(
examples=[
"Latest news about renewable energy",
"Explain the concept of Large Language Models (LLMs)",
"What are the symptoms and prevention tips for the flu?",
"Compare Python and JavaScript for web development"
],
inputs=search_input,
label="Try these examples:",
elem_classes="gradio-examples" # Add class for potential styling
)
# --- Event Handling ---
# Use the async function for processing
async def handle_interaction(query, history, voice_display_name):
"""Wrapper to handle the async generator from process_query_async"""
try:
async for update in process_query_async(query, history, voice_display_name):
# Ensure the button state is updated correctly
ans_out, src_out, btn_state, hist_display, aud_out = update
yield ans_out, src_out, btn_state, hist_display, aud_out
except Exception as e:
print(f"Error in handle_interaction: {e}")
import traceback
traceback.print_exc()
error_message = f"An unexpected error occurred: {e}"
# Provide a final error state update
yield (
error_message,
"<div class='error'>Error processing request.</div>",
gr.Button(value="Search", interactive=True), # Re-enable button on error
history + [[query, f"*Error: {error_message}*"]],
None
)
# Corrected event listeners: Pass the voice_select component directly
search_btn.click(
fn=handle_interaction,
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
search_input.submit(
fn=handle_interaction,
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
if __name__ == "__main__":
# Launch the app
demo.queue(max_size=20).launch(debug=True, share=True) # Enable debug for more logs