import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import spaces from duckduckgo_search import DDGS import time import torch from datetime import datetime import os import subprocess import numpy as np from typing import List, Dict, Tuple, Any from functools import lru_cache import asyncio import threading from concurrent.futures import ThreadPoolExecutor import warnings # Suppress specific warnings if needed (optional) warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated") # --- Configuration --- MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" MAX_SEARCH_RESULTS = 5 TTS_SAMPLE_RATE = 24000 MAX_TTS_CHARS = 1000 # Reduced for faster testing, adjust as needed GPU_DURATION = 60 # Increased duration for longer tasks like TTS MAX_NEW_TOKENS = 256 TEMPERATURE = 0.7 TOP_P = 0.95 # --- Initialization --- # Initialize model and tokenizer with better error handling try: print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token print("Loading model...") # Determine device map based on CUDA availability device_map = "auto" if torch.cuda.is_available() else {"": "cpu"} torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=device_map, # offload_folder="offload", # Only use offload if really needed and configured low_cpu_mem_usage=True, torch_dtype=torch_dtype ) print(f"Model loaded on device map: {model.hf_device_map}") print("Model and tokenizer loaded successfully") except Exception as e: print(f"Error initializing model: {str(e)}") # If running in Spaces, maybe try loading to CPU as fallback? # For now, just raise the error. raise # --- TTS Setup --- VOICE_CHOICES = { 'πŸ‡ΊπŸ‡Έ Female (Default)': 'af', 'πŸ‡ΊπŸ‡Έ Bella': 'af_bella', 'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah', 'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole' } TTS_ENABLED = False TTS_MODEL = None VOICEPACKS = {} # Cache voice packs KOKORO_PATH = 'Kokoro-82M' # Initialize Kokoro TTS in a separate thread to avoid blocking startup def setup_tts(): global TTS_ENABLED, TTS_MODEL, VOICEPACKS try: # Check if Kokoro already exists if not os.path.exists(KOKORO_PATH): print("Cloning Kokoro-82M repository...") # Install git-lfs if not present (might need sudo/apt) try: subprocess.run(['git', 'lfs', 'install'], check=True, capture_output=True) except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err: print(f"Warning: git-lfs might not be installed or failed: {lfs_err}. Cloning might be slow or incomplete.") clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'] result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True) print("Kokoro cloned successfully.") print(result.stdout) # Optionally pull LFS files if needed (sometimes clone doesn't get them all) # subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True) else: print("Kokoro-82M directory already exists.") # Install espeak (essential for phonemization) print("Attempting to install espeak-ng or espeak...") try: # Try installing espeak-ng first (often preferred) subprocess.run(['sudo', 'apt-get', 'update'], check=True, capture_output=True) subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak-ng'], check=True, capture_output=True) print("espeak-ng installed successfully.") except (FileNotFoundError, subprocess.CalledProcessError): print("espeak-ng installation failed, trying espeak...") try: # Fallback to espeak subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak'], check=True, capture_output=True) print("espeak installed successfully.") except (FileNotFoundError, subprocess.CalledProcessError) as espeak_err: print(f"Warning: Could not install espeak-ng or espeak: {espeak_err}. TTS functionality will be disabled.") return # Cannot proceed without espeak # Set up Kokoro TTS if os.path.exists(KOKORO_PATH): import sys if KOKORO_PATH not in sys.path: sys.path.append(KOKORO_PATH) try: from models import build_model from kokoro import generate as generate_tts_internal # Avoid name clash # Make these functions accessible globally if needed, but better to keep scoped globals()['build_model'] = build_model globals()['generate_tts_internal'] = generate_tts_internal device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Loading TTS model onto device: {device}") # Ensure model path is correct model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth') if not os.path.exists(model_file): print(f"Error: TTS model file not found at {model_file}") # Attempt to pull LFS files again try: print("Attempting git lfs pull...") subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True, capture_output=True) if not os.path.exists(model_file): print(f"Error: TTS model file STILL not found at {model_file} after lfs pull.") return except Exception as lfs_pull_err: print(f"Error during git lfs pull: {lfs_pull_err}") return TTS_MODEL = build_model(model_file, device) # Preload default voice default_voice_id = 'af' voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{default_voice_id}.pt') if os.path.exists(voice_file_path): print(f"Loading default voice: {default_voice_id}") VOICEPACKS[default_voice_id] = torch.load(voice_file_path, map_location=device) # Removed weights_only=True else: print(f"Warning: Default voice file {voice_file_path} not found.") # Preload other common voices to reduce latency for voice_name, voice_id in VOICE_CHOICES.items(): if voice_id != default_voice_id: # Avoid reloading default voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt') if os.path.exists(voice_file_path): try: print(f"Preloading voice: {voice_id}") VOICEPACKS[voice_id] = torch.load(voice_file_path, map_location=device) # Removed weights_only=True except Exception as e: print(f"Warning: Could not preload voice {voice_id}: {str(e)}") else: print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, will skip preloading.") TTS_ENABLED = True print("TTS setup completed successfully") except ImportError as ie: print(f"Error importing Kokoro modules: {ie}. Check if Kokoro-82M is correctly cloned and in sys.path.") except Exception as model_load_err: print(f"Error loading TTS model or voices: {model_load_err}") else: print(f"Warning: {KOKORO_PATH} directory not found after clone attempt. TTS disabled.") except subprocess.CalledProcessError as spe: print(f"Warning: A subprocess command failed during TTS setup: {spe}") print(f"Command: {' '.join(spe.cmd)}") print(f"Stderr: {spe.stderr}") print("TTS may be disabled.") except Exception as e: print(f"Warning: An unexpected error occurred during TTS setup: {str(e)}") TTS_ENABLED = False # Start TTS setup in a separate thread print("Starting TTS setup in background thread...") tts_thread = threading.Thread(target=setup_tts, daemon=True) tts_thread.start() # --- Search and Generation Functions --- @lru_cache(maxsize=128) def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]: """Get web search results using DuckDuckGo with caching for improved performance""" print(f"Performing web search for: '{query}'") try: with DDGS() as ddgs: # Using safe='off' potentially gives more results but use cautiously results = list(ddgs.text(query, max_results=max_results, safesearch='moderate')) print(f"Found {len(results)} results.") formatted_results = [] for result in results: formatted_results.append({ "title": result.get("title", "No Title"), "snippet": result.get("body", "No Snippet Available"), "url": result.get("href", "#"), # Attempt to extract date - DDGS doesn't reliably provide it # "date": result.get("published", "") # Placeholder }) return formatted_results except Exception as e: print(f"Error in web search: {e}") return [] def format_prompt(query: str, context: List[Dict[str, str]]) -> str: """Format the prompt with web context""" current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for i, res in enumerate(context)]) # No need for index here prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context. Do not add information not present in the context. Cite the sources used in your answer using bracket notation, e.g., [Source Title]. Use the titles from the context. If the context does not contain relevant information to answer the query, state that clearly. Current Time: {current_time} Web Context: {context_lines if context else "No web context available."} User Query: {query} Answer:""" # print(f"Formatted Prompt:\n{prompt}") # Debugging return prompt def format_sources(web_results: List[Dict[str, str]]) -> str: """Format sources with more details""" if not web_results: return "
No sources found for the query.
" sources_html = "
" for i, res in enumerate(web_results, 1): title = res.get("title", "Source") url = res.get("url", "#") # date = f"{res['date']}" if res.get('date') else "" # DDG date is unreliable snippet = res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "") sources_html += f"""
[{i}]
{title}
{snippet}
""" sources_html += "
" return sources_html # Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks # Keep GPU tasks separate if possible, or ensure thread safety if sharing GPU resources executor = ThreadPoolExecutor(max_workers=4) @spaces.GPU(duration=GPU_DURATION, cancellable=True) async def generate_answer(prompt: str) -> str: """Generate answer using the DeepSeek model with optimized settings (Async Wrapper)""" print("Generating answer...") try: inputs = tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, # Increased context length return_attention_mask=True ).to(model.device) # Ensure generation runs on the correct device with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available() and torch_dtype == torch.float16): outputs = await asyncio.to_thread( # Use asyncio.to_thread for potentially blocking calls model.generate, inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=tokenizer.eos_token_id, do_sample=True, early_stopping=True, num_return_sequences=1 ) # Decode output full_output = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the generated part after "Answer:" answer_part = full_output.split("Answer:")[-1].strip() print(f"Generated Answer Raw Length: {len(outputs[0])}, Decoded Answer Part Length: {len(answer_part)}") if not answer_part: # Handle cases where split might fail or answer is empty print("Warning: Could not extract answer after 'Answer:'. Returning full output.") return full_output # Fallback return answer_part except Exception as e: print(f"Error during answer generation: {e}") # You might want to return a specific error message here return f"Error generating answer: {str(e)}" # Ensure this function runs potentially long tasks in a thread using the executor # @spaces.GPU(duration=GPU_DURATION, cancellable=True) # Keep GPU decorator if TTS uses GPU heavily async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None: """Generate speech from text using Kokoro TTS model (Async Wrapper).""" global TTS_MODEL, TTS_ENABLED, VOICEPACKS print(f"Attempting to generate speech for text (length {len(text)}) with voice '{voice_id}'") if not TTS_ENABLED or TTS_MODEL is None: print("TTS is not enabled or model not loaded.") return None if 'generate_tts_internal' not in globals(): print("TTS generation function 'generate_tts_internal' not found.") return None try: device = TTS_MODEL.device # Get device from the loaded TTS model # Load voicepack if needed (handle potential errors) if voice_id not in VOICEPACKS: voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt') if os.path.exists(voice_file_path): print(f"Loading voice '{voice_id}' on demand...") try: VOICEPACKS[voice_id] = await asyncio.to_thread( torch.load, voice_file_path, map_location=device # Removed weights_only=True ) except Exception as load_err: print(f"Error loading voicepack {voice_id}: {load_err}. Falling back to default 'af'.") voice_id = 'af' # Fallback to default # Ensure default is loaded if fallback occurs if 'af' not in VOICEPACKS: default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt') if os.path.exists(default_voice_file): VOICEPACKS['af'] = await asyncio.to_thread( torch.load, default_voice_file, map_location=device ) else: print("Default voice 'af' also not found. Cannot generate audio.") return None else: print(f"Voicepack {voice_id}.pt not found. Falling back to default 'af'.") voice_id = 'af' # Fallback to default if 'af' not in VOICEPACKS: # Check again if default is needed now default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt') if os.path.exists(default_voice_file): VOICEPACKS['af'] = await asyncio.to_thread( torch.load, default_voice_file, map_location=device ) else: print("Default voice 'af' also not found. Cannot generate audio.") return None if voice_id not in VOICEPACKS: print(f"Error: Voice '{voice_id}' could not be loaded.") return None # Clean the text (simple cleaning) clean_text = ' '.join(text.split()) # Remove extra whitespace clean_text = clean_text.replace('*', '').replace('[', '').replace(']', '') # Remove markdown chars # Ensure text isn't empty if not clean_text.strip(): print("Warning: Empty text provided for TTS.") return None # Limit text length if len(clean_text) > MAX_TTS_CHARS: print(f"Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.") # Simple truncation, could be smarter (split by sentence) clean_text = clean_text[:MAX_TTS_CHARS] last_space = clean_text.rfind(' ') if last_space != -1: clean_text = clean_text[:last_space] + "..." # Truncate at last space # Run the potentially blocking TTS generation in a thread print(f"Generating audio for: '{clean_text[:100]}...'") gen_func = globals()['generate_tts_internal'] loop = asyncio.get_event_loop() audio_data, _ = await loop.run_in_executor( executor, # Use the thread pool executor gen_func, TTS_MODEL, clean_text, VOICEPACKS[voice_id], 'a' # Language code (assuming 'a' is appropriate) ) if isinstance(audio_data, torch.Tensor): # Move tensor to CPU before converting to numpy if it's not already audio_np = audio_data.cpu().numpy() elif isinstance(audio_data, np.ndarray): audio_np = audio_data else: print("Warning: Unexpected audio data type from TTS.") return None print(f"Audio generated successfully, shape: {audio_np.shape}") return (TTS_SAMPLE_RATE, audio_np) except Exception as e: import traceback print(f"Error generating speech: {str(e)}") print(traceback.format_exc()) # Print full traceback for debugging return None # Helper to get voice ID from display name def get_voice_id(voice_display_name: str) -> str: """Maps the user-friendly voice name to the internal voice ID.""" return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found # --- Main Processing Logic (Async) --- async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str): """Asynchronously process user query: search -> generate answer -> generate speech""" if not query: yield ( "Please enter a query.", "", "Search", history, None ) return if history is None: history = [] current_history = history + [[query, "*Searching...*"]] # 1. Initial state: Searching yield ( "*Searching & Thinking...*", "
Searching the web...
", gr.Button(value="Searching...", interactive=False), # Disable button current_history, None ) # 2. Perform Web Search (non-blocking) loop = asyncio.get_event_loop() web_results = await loop.run_in_executor(executor, get_web_results, query) sources_html = format_sources(web_results) # Update state: Analyzing results current_history[-1][1] = "*Analyzing search results...*" yield ( "*Analyzing search results...*", sources_html, gr.Button(value="Generating...", interactive=False), current_history, None ) # 3. Generate Answer (non-blocking, potentially on GPU) prompt = format_prompt(query, web_results) final_answer = await generate_answer(prompt) # Already async # Update state: Answer generated current_history[-1][1] = final_answer yield ( final_answer, sources_html, gr.Button(value="Audio...", interactive=False), current_history, None ) # 4. Generate Speech (non-blocking, potentially on GPU) audio = None tts_message = "" if not tts_thread.is_alive() and not TTS_ENABLED: tts_message = "\n\n*(TTS setup failed or is disabled)*" elif tts_thread.is_alive(): tts_message = "\n\n*(TTS is still initializing, audio may be delayed)*" elif TTS_ENABLED: voice_id = get_voice_id(selected_voice_display_name) audio = await generate_speech(final_answer, voice_id) # Already async if audio is None: tts_message = f"\n\n*(Audio generation failed for voice '{voice_id}')*" # 5. Final state: Show everything yield ( final_answer + tts_message, sources_html, gr.Button(value="Search", interactive=True), # Re-enable button current_history, audio ) # --- Gradio Interface --- css = """ /* ... [Your existing CSS remains unchanged] ... */ .gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; } #header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); } #header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); } #header h3 { color: #a8a9ab; } .search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; } .search-box { padding: 0; margin-bottom: 1rem; } .search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; } /* Style textbox specifically */ .search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px;} /* Style dropdown */ .search-box .gradio-button { border-radius: 0 8px 8px 0 !important; } /* Style button */ .search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 42px !important; } .search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; } .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 44px !important; } .search-box button:hover { background: #1d4ed8 !important; } .search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; } .results-container { background: transparent; padding: 0; margin-top: 1.5rem; } .answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); } .answer-box p { color: #374151; line-height: 1.7; } .answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; } .sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; } .sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; } .sources-container { margin-top: 0; } .source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; } .source-item:last-child { border-bottom: none; } /* .source-item:hover { background-color: #f9fafb; } */ .source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;} .source-content { flex: 1; } .source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; } .source-title:hover { color: #1d4ed8; text-decoration: underline; } .source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; } .source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; } .chat-history { max-height: 400px; overflow-y: auto; padding: 1rem; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; } .chat-history::-webkit-scrollbar { width: 6px; } .chat-history::-webkit-scrollbar-track { background: #f9fafb; } .chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; } .examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; } .examples-container .gradio-examples { gap: 8px !important; } /* Target examples component */ .examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 0 !important; font-size: 0.9em !important; padding: 6px 12px !important; } .examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; } .markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; } .markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; } .markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; } .markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;} .markdown-content h3 { font-size: 1.2em !important; } .markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; } .markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; } .markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; } .markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;} .markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;} .markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; } .markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; } .markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;} .markdown-content th { background: #f9fafb !important; font-weight: 600; } .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } .accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */ .voice-selector { margin: 0; padding: 0; } .voice-selector div[data-testid="dropdown"] { /* Target the specific dropdown container */ height: 44px !important; } .voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; } .voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; } .audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;} .audio-player audio { width: 100% !important; } .searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; } .searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; } .error { background: #fef2f2; color: #ef4444; border-color: #fecaca; } .no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;} @keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } } .searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Add span for animation */ .dark .gradio-container { background-color: #111827 !important; } .dark #header { background: linear-gradient(135deg, #1f2937, #374151); } .dark #header h3 { color: #9ca3af; } .dark .search-container { background: #1f2937; border-color: #374151; } .dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; } .dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; } .dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .dark .search-box button { background: #3b82f6 !important; } .dark .search-box button:hover { background: #2563eb !important; } .dark .search-box button:disabled { background: #4b5563 !important; } .dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; } .dark .answer-box p { color: #d1d5db; } .dark .answer-box code { background: #374151; color: #9ca3af; } .dark .sources-box { background: #1f2937; border-color: #374151; } .dark .sources-box h3 { color: #f9fafb; } .dark .source-item { border-bottom-color: #374151; } .dark .source-item:hover { background-color: #374151; } .dark .source-number { color: #9ca3af; } .dark .source-title { color: #60a5fa; } .dark .source-title:hover { color: #93c5fd; } .dark .source-snippet { color: #d1d5db; } .dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; } .dark .chat-history::-webkit-scrollbar-track { background: #374151; } .dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; } .dark .examples-container { background: #374151; border-color: #4b5563; } .dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; } .dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; } .dark .markdown-content { color: #d1d5db !important; } .dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; } .dark .markdown-content a { color: #60a5fa !important; } .dark .markdown-content a:hover { color: #93c5fd !important; } .dark .markdown-content code { background: #374151 !important; color: #9ca3af; } .dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;} .dark .markdown-content pre code { background: transparent !important; } .dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; } .dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; } .dark .markdown-content th { background: #374151 !important; } .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } .dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;} .dark .voice-selector select:focus { border-color: #3b82f6 !important; } .dark .audio-player { background: #374151 !important; border-color: #4b5563;} .dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; } .dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; } .dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;} """ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo: chat_history = gr.State([]) with gr.Column(): # Main container with gr.Column(elem_id="header"): gr.Markdown("# πŸ” AI Search Assistant") gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice") with gr.Column(elem_classes="search-container"): with gr.Row(elem_classes="search-box", equal_height=True): search_input = gr.Textbox( label="", placeholder="Ask anything...", scale=5, container=False, # Important for direct styling elem_classes="gradio-textbox" ) voice_select = gr.Dropdown( choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", # No label needed here scale=2, container=False, # Important elem_classes="voice-selector gradio-dropdown" ) search_btn = gr.Button( "Search", variant="primary", scale=1, elem_classes="gradio-button" ) with gr.Row(elem_classes="results-container", equal_height=False): with gr.Column(scale=3): # Wider column for answer + history with gr.Column(elem_classes="answer-box"): answer_output = gr.Markdown(elem_classes="markdown-content", value="*Your answer will appear here...*") # Audio player below the answer audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player", type="numpy") # Expect numpy array with gr.Accordion("Chat History", open=False, elem_classes="accordion"): chat_history_display = gr.Chatbot(elem_classes="chat-history", label="History", height=300) with gr.Column(scale=2): # Narrower column for sources with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources") sources_output = gr.HTML(value="
Sources will appear here after searching.
") with gr.Row(elem_classes="examples-container"): gr.Examples( examples=[ "Latest news about renewable energy", "Explain the concept of Large Language Models (LLMs)", "What are the symptoms and prevention tips for the flu?", "Compare Python and JavaScript for web development" ], inputs=search_input, label="Try these examples:", elem_classes="gradio-examples" # Add class for potential styling ) # --- Event Handling --- # Use the async function for processing async def handle_interaction(query, history, voice_display_name): """Wrapper to handle the async generator from process_query_async""" try: async for update in process_query_async(query, history, voice_display_name): # Ensure the button state is updated correctly ans_out, src_out, btn_state, hist_display, aud_out = update yield ans_out, src_out, btn_state, hist_display, aud_out except Exception as e: print(f"Error in handle_interaction: {e}") import traceback traceback.print_exc() error_message = f"An unexpected error occurred: {e}" # Provide a final error state update yield ( error_message, "
Error processing request.
", gr.Button(value="Search", interactive=True), # Re-enable button on error history + [[query, f"*Error: {error_message}*"]], None ) # Corrected event listeners: Pass the voice_select component directly search_btn.click( fn=handle_interaction, inputs=[search_input, chat_history, voice_select], # Pass voice_select component outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] ) search_input.submit( fn=handle_interaction, inputs=[search_input, chat_history, voice_select], # Pass voice_select component outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] ) if __name__ == "__main__": # Launch the app demo.queue(max_size=20).launch(debug=True, share=True) # Enable debug for more logs